الفصل الحادي عشر

طرق التحليل الكيميائي بالكهربية

المعايرة المقدرة بقياس التيار: (1)

يعتمد هذا النوع من المعايرات على التيارات المنتشرة. وهي تختلف عن التحليل البولاجرافي في أن الجهد المستخدم يتغير أثناء التحليل.

ويلاحظ أن الجهاز المستخدم أكثر بساطة. إذا كان عند جهد معين (متحكم فيه) يتقرر إنتشار أحد المكونات للتيار الكلى الملاحظ أو المشاهد ويتناسب هذا التيار مع تركيز ذلك المكون إذا كان هذا المكون يختفى تدريجياً من النظام من خلل تفاعله مع مادة أخرى مضافه ينخفض التيار المنتشر المشاهد حتى الوصول إلى نقطة النهاية وعندها توجد كمية من التيار المتبقى.

وفى الناحية العملية ينضبط جهد قطب البلاتين أو الزئبق قريباً من جهد نصف الموجه للمكون المراد تحليله.

يلاحظ التيار أثناء المعايرة قبل وبعد نقطة النهاية. الزيادة في المعاير إما تسبب أولاً تسبب زيادة في التيار إعتماداً على الظروف المستخدمة.

هناك صورتان لمنحنيات المعايرة المقدرة بقياس التيار في الشكل التالى:

شكل (45)

التجربة: تقدير قوة محلول اليود بالمعايرة المقدرة بقياس التيار

المواد المستخدمة: أنظر الرسم

الطريقة:

- (1) حضر محلول قياسى من ثيوكبريتات الصوديوم عياريته تقريباً 0.1N. حضر محلول من اليود عياريته تقريباً N/10 والمستخدم كمحلول مجهول.
- (2) وصل الدائرة كما هو مبين في الشكل (44). إنقل $25 \, \text{ml}$ من اليود في كأس واغمر فيه قطبان من شرائح البلاتين النقى مساحة كل منهم $25 \, \text{cm}^2$.
- (3) أضبط مقسم الجهد يصل فرق الجهد إلى حوالى mv وذلك من قراءة الفلتاميتر (V) والمستخدم بين القطبين. يلاحظ التيار على الميللي أميتر (A).
- (4) يترك الجهد ثابتاً يضاف محلول الثيوكبريتات من السحاحة تدريجياً. يسجل التيار بعد كل إضافة. إستمر في الإضافة حتى الوصول إلى نقطة النهاية وزيادة.
- (5) كرر الخطوات (2)، (3)، (4). يعاير في هذه الحالات 25 من الثيوكبريتات بمحلول اليود في السحاحة.

الحسابات:

- (1) إرسم منحنيات المعايرة برسم التيار المشاهد مع حجم المعاير. يستبه المنحنى للمعايره الأولى (a) في السلك (45)، يشبه المنحى الثانى (b) في السلك (45).
- (2) إحسب العيارية المتوسطة لمحلول اليود من نقطة النهاية في المعايرتين. شم إحسب قوة المحلول.

(2) قياس الإستقطابية للكشف عن المواد المذابة في محلول مخفف:

البولاروجرافيا هو نوع مهم من فروع التحليل بالكهربية أسسه هيروفسكى عام 1923. تعتمد هذه الطريقة على قياس خاصية التيار - الفولطية عند قطب التنقيط بالزئيق الذي يتضمن إستقطاب التركيز.

وتسمح هذه الطريقة بالتحليل الكيفى والكمى للمحاليل المحتوية على مواد يمكن إختزالها أو أكسدتها على سطح الزئبق المستقطب.

والجهاز الذى يسجل بطريقة أوتوماتيكية منحنى التيار – الفولطية يسمى البولاروجراف. ويسمى المنحنى الذى نحصل عليه من الجهاز بالبولاروجرام. وفى المعمل يمكن الحصول على البولاروجرام بمساعدة بولاروجراف يدوى وهو المبين في الشكل (46) يمثل الكاثود قطب تنقيط الزئبق وأما الأنود فهو قطب كالوميل مشبع. والإلكتروليت المستخدم هو محلول كلوريد البوتاسيوم بإستخدام جهاز مقياس الجهد يمكن إستخدام فولطية متغيرة بين الكاثود والأثود غير المستقطب وذلك بإستخدام ميكروأميتر لقياس التيار.

الفولطية المستخدمة تمثل جهد قطب تنقيط الزئبق نسبة إلى أنود الكالوميل الغير مستقطب.

منحنيات التيار – الفولطية التي نحصل عليها في KCl 0.1M فقط وفي وجود 10.4 جرام أيون/لتر من كل من الخارصين + T1+ ،Zn+ يوضحه الرسم في الشكل (47) وكما هو واضح من الرسم يصل معدل التغير في التيار بالفولطية المستخدمة إلى أقصى قيمة عند جهد الترسيب للكاتيون. يصل التيار بذلك إلى قيمة ثابتة ومحددة 11 تسمى التيار المحدد والذي يتناسب مع تركيز المادة المختزلة.

الإرتفاع السريع للتيار مع الجهد يعطى الموجه البولاروجرافية والجهد عند النقطة المتوسطة للموجة هو جهد نصف الموجة ${
m e}_{\,0}\,(^{1}\!/_{2})$

وهذا الجهد يعتبر خاصية ثابتة للمادة ولا يعتمد على التركيز. في الأكسدة أو الإختزال الإنعكاسي تكون قيم الجهد النصف موجى لأيونات النحاس والخارصين على التوالي 0.03V - ، 1.06V - بالنسبة نقطب الكالوميل المشبع.

وجود الكتروليت مدعوم تركيزه على الأقل 1/100 مرة قدر الأيونات المختزلة يؤكد أن هذه الأيونات تصل إلى سطح القطب بالإنتشار فقط. وهذا يعتبر مطلب هام لنظرية التحليل البولاروجرافي.

والتيار الصغير المشاهد في غياب المواد المختزلة (في الإلكتروليت المدعوم فقظ) هو التيار المتبقى أو تيار الشحن.

وفى غياب الأكسوجين يكون التيار المتبقى كسر من الميكرو أمبير. إذا استخدام البولاروجرام للتحليل الكيفى فإنه يكفى تقدير جهود نصف الموجه فقط. أما في القياسات الكمية فلابد من أخذ معادلة الكوفيك التالية:

 $iL = 607 \ ZCD^{1/2} m^{2/3} t^{1/6}$

حيث iL هو التيار المحدود بالميكروأمبير C ، μ amp التركيز للمادة بالميللى مول/ لتر، D معامل الإنتشار معبراً عنه بالسم 2 / ثانية. m سرعة إنسياب الأنبوبــة الشعرية أى كتلة الزئبق المنساب بالميللى جرام/ ثانية، t زمن نمو نقطة واحدة في الميللى جرام، ثانية.

Z عدد الإلكترونات المستعملة في العملية الكهروكيميائية.

ومن المعادلة على فرض أن الكميات الأخرى ثابتة iL تتناسب مع التركيز C.

يختزل الأكسوجين بسهولة على كاثود الزئبق وهكذا يتداخل مع خاصية التيار – الفولطية يجب التخلص من الأكسوجين المذاب قبل عمليات القياس.

ومن الصعوبات الأخرى في التحليل البولاروجرافى ظهور الحدود القصوى البولاروجرافية على منحنيات التيار – الفولطية.

هذه الحدود القصوى يمكن التخلص منها بإضافة كميات صغيرة من مواد ممتزة ذات نشاط سطحى مثل الجيلاتين، الزيلين أو الميثيل الأحمر وهذه المواد تسمى مثبطات الحدود القصوى.

التجربة: إختبار الخواص البولاروجرافية لأيونات الخارصين والنحاس Cu++ ، Zn++

الطريقة:

(1) حضر ml من محلول تركيزه 10^{-3} جم أيون / لتر بالنسبة لأيون (1) حضر $2n^{++}$ وذلك في محلول $2n^{++}$ من كلوريد البوتاسيوم كمحلول الكتروليتي داعم، يستخدم هذا المحلول لتدعيم خواص التيار - الجهد.

في كل الخطوات التالية يجب أولاً التخلص من الأكسوجين وذلك بإمرار تيار من غاز النيتروجين لمدة 15 min.

توصل الدائرة كما هو موضح في الشكل (46).

- (2) في حجم كافي من المخلوط تقتفي أثر الحدود الأقصى للتيار.
- (3) نكرر ما سبق مع إضافة %0.01 جيلاتين. لاحظ أثر الجيلاتين على شكل الموجات وفى تخلصه من الحدود الأقصى للتيار إستنتج قيم جهود نصف الموجة بالنسبة لقطب الكالوميل المشبع.
- (4) خفف المخلوط الأصلى 1.3، 1.5، 1.8 مرة وذلك بالماء المقطر واحصل على البولاروجرام عند كل تخفيف وذلك في وجود %0.01 جيلاتين.

حدد العلاقة بين التركيز والتيار المحدود.

- (5) كرر الخطوة (1) بإستخدام بللورات من الكامفور مع المخلوط. ولاحظ أثر هذه المادة على كل من جهد نصف الموجه والتيار المحدود.
- (6) إستنتج القيم النظرية للتيار المحدود بإستخدام معادلة الكوفيك. قارن مع القيم التجريبية.
 - $.(0.72x10^{-5}cm^2/sec = Zn^{++}$ المارصين، Cu^{++} أيونات الخارصين، D)

الجدول الدورى لترتيب العناصر

الأعداد والأوزان الذرية للعناصر

	وران الدرية للساحر		
	Symbol	Atomic	Atomic
		number	weight
Actinium	Ac	89	[227]
Aluminum	Al	13	26.9815
Americium	Am	95	[243]
Antimony	Sb	51	121.75
Argon	Ar	18	39.948
Arsenic	$\mathbf{A}\mathbf{s}$	33	74.9216
Astatine	At	85	[210]
Barium	Ba	56	137.34
Berkelium	Bk	97	[247]
Beryllium	Be	4	9.01218
Bismuth	Bi	83	208.980
Boron	В	5	10.81
Bromine	Br	35	79.904
Cadmium	Cd	48	112.40
Calcium	Ca	20	40.08
Californium	Ct	98	[251]
Carbon	C	6	12.011
Cerium	Ce	58	140.12
Cesium	Cs	55	132.905
Chlorine	Cl	17	35.453
Chromium	Cr	24	51.996
Cobalt	Co	27	58.9332
Copper	Cu	29	63.546
Curium	Cm	96	[247]
Dysprosium	Dy	66	162.50
Einsteinium	Es	99	[254]
Erbium	Er	68	167.26
Europium	Eu	63	151.96
Fermium	Fm	100	[257]
Fluorine	${f F}$	9	18.9984
Francium	Fr	87	[223]
Gadolinium	Gd	64	157.25
Gallium	Ga	31	69.72
Germanium	Ge	32	72.59
Gold	Au	79	196.967
Hafnium	Hf	72	178.49
Hahnium	Ha	105	[262]
Helium	He	2	4.00260
Holmium	Ho	67	164.9304
Hydrogen	\mathbf{H}	1	1.0079
Indium	In	49	114.82

	Symbol	Atomic number	Atomic weight
Iodine	Ī	53	126.9045
Iridium	Îr	77	192.22
Iron	Fe	26	55.847
Krypton	Kr	36	83.80
Lanthanum	La	57	138.9055
Lawrencium	Lr	103	[260]
Lead	Pb	82	207.2
Lithium	Li	3	6.941
Lutetium	Lu	7 1	174.87
Magnesium	Mg	12	24.305
Manganese	Mn	25	54.9380
Mendelevium	Md	101	[258]
Mercury	Hg	80	200.59
Molybdenum	Mo	42	95.94
Neodymium	Nd	60	144.24
Neon	Ne	10	20.179
Neptunium	Np	93	237.0482
Nickel	Ni	28	58.70
Niobium	Nb	41	92.9064
Nitrogen	N	7	14.0067
Nobelium	No	102	[259]
Osmium	Os	76	190.2
Oxygen	0	8	15.9994
Palladium	Pd	46	106.4
Phosphorus	P	15	30.9738
Platinum	Pt	78	195.09
Plutonium	Pu	94	[244]
Polonium	Po	84	[210]
Potassium	K	19	39.098
Praseodymium	Pr	59	140.9077
Promethium	Pm	61	[147]
Protactinium	Pa	91	231.0359
Radium	Ra	88	226.0254
Radon	Rn	86	[222]
Rhenium	Re	75	186.207
Rhodium	Rh	45	102.905
Rubidium	Rb	37	85.4678
Ruthenium	Ru	44	101.07
Rutherfordium	Rf	104	[257]
Samarium	Sm	62	150.4
Scandium	Sc	21	44.9559
Selenium	Se	34	78.96
Silicon	Si	14	28.086

	Symbol	Atomic	Atomic
		number	weight
Silver	$\mathbf{A}\mathbf{g}$	47	107.868
Sodium	Na	11	22.9898
Strontium	Sr	38	87.62
Sulfur	S	16	32.06
Tantalum	Ta	73	180.948
Technetium	Tc	43	98.9062
Tellurium	Te	52	127.60
Terbium	Tb	65	158.9254
Thallium	Tl	81	204.37
Thorium	Th	90	232.038
Thulium	Tm	69	168.934
Tin	Sn	50	118.69
Titanium	Ti	22	47.90
Tungsten	\mathbf{W}	74	183.85
Uranium	U	92	238.029
Vanadium	V	23	50.9414
Xenon	Xe	54	131.30
Ytterbium	Yb	70	173.04
Yttrium	Y	39	88.9059
Zinc	Zn	30	65.38
Zirconium	Zr	40	91.22

جداول اللوغاريتمات

	جداون التوعاريتمات									
	0	1	2	3	4	5	6	7	8	9
10	0000	0043	0086	0.128	0170	0212	0253	0294	0334	0374
11	0414	0453	0492	0.531	0569	0607	0654	0682	0719	0755
12	0792	0828	0864	0899	0934	0969	1004	1038	1072	1106
13	1139	1173	1206	1239	1271	1303	1335	1367	1399	1430
14	1461	1792	1523	1553	1584	1614	1644	1673	1703	1732
15	1761	1790	1818	1847	1875	1903	1931	1959	1987	2014
16	2041	2068	2095	2122	2148	2175	2201	2227	2253	2279
17	2304	2330	2355	2380	2405	2430	2455	2480	2504	2529
18	2553	2577	2601	2625	4648	2672	2695	2718	2742	2765
19	2788	2810	2833	2856	2878	2900	2923	2945	2967	2989
20	3010	3032	3054	3075	3096	3118	3139	3160	3181	3201
21	3222	3243	3263	3284	3304	3324	3345	3365	3385	3404
22	3424	3444	3464	3483	3502	3522	3541	3560	3279	3598
23	3617	3636	3655	3674	3692	3711	3729	3747	3766	3784
24	3802	3820	3838	3856	3874	3892	3909	3929	3945	3962
25	3979	3997	4041	4031	4048	4065	4082	4099	7116	4133
26	4150	4166	4183	4200	4216	4232	4249	4265	4281	4298
27	4314	4330	4364	4362	4378	4393	4409	4425	4440	4465
28	4472	4487	4502	4518	4533	4548	4564	4579	4594	4609
29	4624	4639	4654	4669	4683	4698	4713	4728	4742	4757
				· ·						
30	4771	4786	4800	4814	4829	4843	4857	4871	4886	4900
31	4914	4928	4942	4955	4969	4983	4997	5011	5024	5038
32	5051	5065	5079	5092	5105	5119	5132	5145	5159	5172
33	5185	5198	5211	5224	5237	5250	5263	5276	5289	5302
34	5315	5328	5340	5353	5366	5378	5391	5403	5416	5428
							A			
35	5441	5453	5465	5478	5490		5514	5527	5539	5551
36	5563	5575	5587	5599	5611	5623	5635	5647	5658	5670
37	5682	5694	5705	5717	5729	5740	5752	5763	5775	5786
38	5798	5809	5821	5832	5843	5855	5866	5877	5888	5899
39	5911	5922	5933	5944	5955	5966	5977	5988	5999	6010
4.0			<0.4 5		-0			5005		
40	6021	6031	6042	6053	6064	6075	6085	6096	6107	6117
41	6128	6138	6149	6160	6170	6180	6191	6201	6212	6222
42	6232	6243	6253	6263	6274	6284	6294	6304	6314	6325
43	6335	6345	6355	6365	6375	6385	6395	6405	6415	6425
44	6435	6444	6454	6464	6474	6484	6493	6503	6513	6522

تابع جداول اللوغاربتمات

				ب الما	ن الموساري	عبع جداو	•			
45	6532	6542	6551	6561	6571	6580	6590	6599	6609	6618
46	6628	4437	6646	6656	6665	6675	6684	6693	6702	6712
47	6721	6730	6739	6749	6758	6767	6776	6785	6794	6803
48	6812	6821	6830	6839	6848	6857	6866	6875	6884	6893
49	6902	6911	6920	6828	6937	4946	6955	6964	6972	6981
50	6990	6998	7007	7016	7024	7033	7042	7050	7059	7067
51	7076	7084	7093	7101	7110	7118	7126	7135	7143	7152
52	7160	7168	7177	7185	7193	7202	7210	7218	7226	7235
53	7243	7251	7259	7267	7275	7284	7292	7300	7308	7316
54	7324	7332	7340	7348	7356	7364	7372	7380	7388	7396
55	7404	7412	7419	7427	7453	7443	7451	7459	7466	9474
56	7482	7490	7497	7505	7513	7520	7528	7536	7543	7551
57	7559	7566	7574	7582	7589	7597	7604	7612	7619	7627
58	7634	7642	7694	7657	7664	7672	7679	7686	7694	7701
59	7709	7716	7723	7731	7738	7745	7752	7760	7767	7774
60	7782	7789	7796	7803	7810	7818	7825	7832	7893	7864
61	7853	7860	7868	7875	7882	7889	7896	7903	7910	7917
62	7924	7931	7938	7945	7952	7959	7966	7973	7980	7987
63	7993	8000	8007	8014	8021	8028	8035	8041	8048	8055
64	8062	8069	8075	8082	8089	8096	8102	8109	8116	8122
65	8129	8136	8142	8149	8156	8162	8169	8176	8182	8189
66	8195	8202	8209	8215	8222	8228	8235	8241	8248	8289
67	8261	8267	8274	8280	8287	8293	8299	8306	8312	8319
68	8325	8331	8338	8344	8351	8357	8363	8370	8376	8328
69	8388	8395	8401	8407	8414	8420	8426	8432	8439	8445
70	8451	8457	8463	8470	8476	8482	8488	8494	8500	8506
71	8513	8519	8525	8531	8537	8543	8549	8555	8561	8567
72	8573	8579	8585	8591	8597	8603	8609	8615	8621	8627
73	8633	8639	8645	8651	8657	8663	8669	8675	8681	8686
74	8692	8698	8704	8710	8716	8722	8727	8733	8739	8745
								/		
75	8751	8756	8762	8768	8774	8779	8785	8791	8797	8802
76	8808	8814	8820	8825	8831	8837	8842	8848	8854	8859
77	8865	8871	8876	8882	8887	8893	8899	8904	8910	8915
78	8921	8927	8932	8938	8943	8949	8954	8960	9865	8971
79	8976	8982	8987	8993	8998	9004	9009	9015	9020	9025

تابع جداول اللوغاريتمات

80	9031	9036	9042	9047	9053	9058	9063	9069	9074	9079
81	9085	9090	9096	9101	9106	9112	9117	9122	9128	9133
82	9138	9143	9149	9154	9159	9165	9170	9175	9180	9186
83	9191	9196	9201	9206	9212	9217	9222	9227	9232	9238
84	9243	9248	9253	9258	9263	9269	9274	9279	9284	9289
85	9294	9299	9304	9309	9315	9320	9325	9330	9335	9340
86	9345	9350	9355	9360	9365	9370	9375	9380	9385	9390
87	9395	9400	9405	9410	9415	9420	9425	9430	9435	9440
88	9445	9450	9455	9460	9465	9469	9474	9479	9484	9489
89	9494	9499	9504	9509	9513	9518	9523	9528	9533	9538
90	9592	9574	9552	9557	9562	9566	9571	9576	9581	9586
91	9590	9595	9600	9605	9609	9614	9619	9624	9628	9633
92	9638	9643	9647	9652	9657	9661	9666	9671	9675	9680
93	9685	9689	9694	9699	9703	9708	9713	9717	9722	9727
94	9731	9736	9741	9745	9750	9754	9759	9763	9768	9773
95	9777	9782	9786	9791	9795	9800	9805	9809	9814	9818
96	9823	9827	9832	9836	9841	9845	9850	9854	9859	9863
97	9868	9872	9877	9881	9886	9890	9894	9899	9903	9908
98	9912	9917	9921	9926	9930	9934	9939	9943	9948	9952
99	9956	9961	9965	9969	9974	9978	9983	9987	9991	9996

المراجع

(1) Barrow: Physica Chemistry 4/e

(2) Siencko : Chemistry, Principles and Applications

(3) Levine : Physical Chemistry

(4) Moore : Chemistry

(5) E.M.Khairy and Others:
Practical Physical Chemistry

الملاحــق

جدول (1) وحدات النظام العالمي الأساسية

Basic SI Units

رمز الوحدة	إسم الوحدة	الكمية الفيزيائية
m	المتر	الطول
Kg	الكيلوجرام	الكتلة
\mathbf{S}	الثانية	المزمن
A	الأمبير	التيار الكهربي
K	كلفن	درجة الحرارة في الديناميكا الحرارية
mol	المول	كمية المادة

جدول (2) وحدات مستنبطة من الوحدات الأساسية Derived SI Units

رمز الوحدة	إسم الوحدة	الكمية الفيزيائية
	(الإسم الخاص	
	ورمزهُ)	
m^2	متر مربع	المساحة
m^3	متر مكعب	الحجم
$\mathbf{Kg.m}^{-3}$	كيلو جرام لكل متر	الكثافة
	مكعب	
$\mathbf{m.s}^{-1}$	متر لكل ثانية	السرعة
$\mathbf{m.s}^{-2}$	متر لكل ثانية تربيع	العجلة
$Kg.m.s^{-2} = J.m^{-1}$	نيوتن (N)	القوة
$N.m^{-2}$	نيوتن لكل متر مربع	الضغط
$\mathbf{Kg.m}^2.\mathbf{s}^{-2} = \mathbf{N.m}$	جول (J)	الطاقة
$Kg.m^2.s^{-3}=J.s^{-1}$	(\mathbf{W}) وات	القدرة (قوة
		کهربیة)
A.S	كولوم (C)	الشحنة الكهربية
$Kg.m^2.s^{-3}.A^{-1}=J.A^{-1}.s^{-1}$	فولت (\mathbf{V})	فرق الجهد الكهربي
$Kg.m^2.s^{-3}.A^{-2}=J.V.A^{-1}$	$(oldsymbol{\Omega})$ أوم	المقاومة الكهربية
$A^2.S^4.Kg^{-1}.m^{-2}=A.S.V^{-1}$	(\mathbf{F}) فاراد	السعة الكهربية

جدول (3)					
بعض المقاطع الأمامية تبعاً لـ SI					

المضاعفات	الرمز	المقطع	المضاعفات	الرمز	المقطع
10	da	ديكا	10^{-1}	d	دیسی
10^2	h	هيكتا	10^{-2}	c	سنتى
10^3	k	كيلو	10^{-3}	m	ميللي
10^6	\mathbf{M}	ميجا	10^{-6}	μ	ميكرو
10 ⁹	\mathbf{G}	جيجا	10^{-9}	'n	نانو
10 ¹²	T	تيرا	10^{-12}	р	بيكو
10^{15}	P	بيتا	10^{-15}	$\bar{\mathbf{f}}$	فيمتو
10 ¹⁸	${f E}$	إكسيا	10^{-18}	a	أتو

جدول (4) معاملات التحويل

ΙÅ	_ =	10^{-10} m.
I Liter	=	10^{-10} m^3 .
I atm	=	101.325 N.m^{-2}
0°C	=	273.15° K.
1 erg	=	10^{-7} J.
I Cal	=	4.1840 J.
I e V	=	$1.6022 \times 10^{-9} \text{ J}.$
h e	=	$1.9865 \times 10^{-23} \text{ J.cm}$

جدول (5) قيم الثوابت الأساسية

قيمة الثابت	الرمز	إسم الثابت	
$2.997925 \times 10^{10} \text{ cm/s}$ $2.997925 \times 10^8 \text{ m/s}$	C	سرعة الضوء	
6.6262 x 10 ⁻²⁷ erg.s 6.6262 x 10 ⁻³⁴ J.s	h	ثابت بلانك	
$1.38062 \times 10^{-16} \text{ erg/abs.erg K}^{-1}$ $1.38062 \times 10^{-16} \text{ erg/abs.erg K}^{-1}$	k	ثابت بولتزمان	
4.80325 10 ¹⁰ esu. 1.60219 x 10 ⁻¹⁹ Coloumb	e	شحنة الإلكترون	
6.022169×10^{23} molecules/mol	N_A	عدد أفوجادرو	
82.055 cm ³ .atm/abs.mol 0.082054 L. atm/abc.mol 8.3134 J/abs.mol 1.9872 Cal/abc.mol	R	الثابت العام للغازات	
9.64867 x 104 abs. Coloumb/Eq.wt.	. F	ثابت فارادای	
2.3060 x 10 ⁴ Cal/mol	eV	إلكترون فولت	

جدول (6)	
الكميات الفيزيائية	بعض

		- 1	
رمز الوحدة	إسم الوحدة	الرمز	الكمية الفيزيائية
m	متر	Ł	الطول
kg	كيلو جرام	\mathbf{M}	الكتلة
S	ثانية	T	الزمن
\mathbf{A}	أمبير	I	التيار الكهربي
k	كلفن	T	درجة الحرارة
			الثرموديناميكية
mol	مول	N	كمية المادة
cd	كانديلا	$\mathbf{I}_{\mathbf{V}}$	شدة الإستضاءة
$N=kg m s^{-2}$	نيوتن	${f F}$	القوة
$Nm^{-2} = kg m^{-1} s^{-2}$	••••	P	الضغط
$J=Nm=kg m^2 s^{-2}$	جول	H, U, E	الطاقة
$\mathrm{J}\mathrm{k}^{-1}$		\mathbf{S}	الأنتروب <i>ي</i>
$\mathbf{mol}\ \mathbf{dm}^{-3}\ \mathbf{s}^{-1}$	••••	dc/dt	السرعة
$dm^{3n} mol^{-n} s^{-1}$	••••	$\mathbf{k_r}$	ثابت السرعة
••••	••••	••••	رتبة التفاعل
$\mathbf{J} \ \mathbf{mol}^{-1}$		\mathbf{E}^*	طاقة التنشيط
		$\mathbf{E_a}$ اُو	
$M^{-3} s^{-1}$		${f Z}$	سرعة التصادم
ليس له وحدة		ф	منتج الكم
${f s}^{-1}$	هرتز	v	التردد

(7)	جدول
ية المستخدمة في الكتاب	الحروف الأبجدية اليونانب

المضاعفات	الرمز	المقطع	المضاعفات	الرمز	المقطع
ρ	رو	L	أيوتا	α	أثفا
σ	سيجما	K	كابا	β	بيتا
τ	تاو	λ	لامبدا	γ	جاما
υ	أبسيلون	μ	ميو	δ	دلتا
ф	فای	ν	نيو	3	إبسلون
χ	کای	ξ	زی	ξ	زيتا
Ψ	إبساى	0	أميكرون	η	إيتا
ത ത	أوميجا	π	بای	θ	ثيتا

بعض الثوابت الهامة

		<u> </u>
980.7 cm. sec ⁻² 980.7 dyne g ⁻¹	=	عجلة الجاذبية الأرضية(g)
13.5955g/cm ³	=	كثافة الزئبق عند 0°C
13.5340 g/cm ³	=	كثافة الزئبق عند °25
1000.028 cm ³	=	الليتر (٤)
4.184 Joules	=	1 کالوری (cal.)
10 ⁷ erg.	=	1 جول
96500 Coulombo equiv ⁻¹ 23060 Col volt ⁻¹ equiv ⁻¹	=	1 فارادای (F)
6.025 x 10 ²³ mole ⁻¹	=	عدد أفاوجادرو (N)
8.314 Joules $deg^{-1} mole^{-1}$ 0.082 l. atm. $deg^{-1} mole^{-1}$	=	الثابت العام للغازات (R)
R / N 1.38 x 10 ⁻¹⁶ erg. deg ⁻¹ mole ⁻¹	=	ثابت بولتزمان (K)
6.62 x 10 ⁻²⁷ erg. sec	=	ثابت بلانك (h)
2.99 x 10 ¹⁰ cm. sec ⁻¹	=	سرعة الضوء (C)
F/N = 1.6×10^{-19} coulomb. 1.6 x 10^{-20} e.m.u.		شحنة الإلكترون (e)
5.17 x 10 ¹⁷ e.s.u.1g.	=	شحنة الإلكترون النوعية (e/m)
9.1 x 10 ⁻²⁸ g. = $\frac{e}{e/m}$	=	كتلة الإلكترون (m)
$\frac{9.1 \times 10^{-28}}{1.673 \times 10^{-24}} = \frac{1}{1837}$	=	كتلة الإلكترون النسبة كتلة ذرة الهيدروجين
$1.00027 = \frac{16.0044}{16.0000}$	=	الوزن الذرى الفيزياتيى النسبة ————————————————————————————————————
1.6 x 10 ⁻¹² erg.	=	1 الكترون فولت (ev)
1.6 x 10 ⁻⁹ erg.	=	1 كيلو إلكترون فولت (kev)
1.6 x 10 ⁻⁶ erg.	=	1 مليون إلكترون فولت (Mev)
10 ⁻¹⁴ at 25°C	=	الحاصل الأيوني للماء (Kw)
$Log_e x = 2.303 log_{10} x$	=	\log_{10} إلى $\log_{ m e} { m x}$