﴿ و ١٧ ب ، ج ١١٠ الف ، ١ ١٧ ب ، ب ١٦ الف ، ل ٦٥ الف ﴾ ## المقالة الرابعة من القانون المسعودي اما اذا تمهدُّ الطريق الى معرفة الخطوط القاطعة للدائرة والماسة اياها، وهي عدَّة المزاول لهذه الصناعة، فسأستعملها في هذه المقالة في الاشياء التي يحتاج اليها من مقادر القسى و الزوايا، و تحديد النقط و صنوف الأوضاع على سطح الكرة و ما يتبع ذلك و يتصل به٬ باذن الله و حسن تو فيقه ٠ ### الياب الاول /. في مقدار زاوية تقاطع معدل النهار مع منطقة البروج وهو الميل الاعظم معلوم أن معدّل النهار في مداره ثابت الوضع في كل بلد على فلك نصف نهاره'، وإن منطقة البروج في أبعاضها مختلفة الوضع عليه في جميع الدورة التي يستوفيها اليوم بليلته، و لهذا تتفرّد اجزاؤها بارتفاع في فلك نصف النهار بحسب ميولها عرب معدل النهار، فتتردد هذه ١٥ الارتفاعات فيه فيما بين حدَّن ان كانا عن سمت الرأس الي جهة واحدة من الشمال والجنوب، فأعظم و أصغر يكون الميل الأعظم نصف ما بينهما، و ان كانا عنه في جهتين مختلفتين فأصغرين يكون الميل الأعظم نصف بحموع تماميهها" . ⁽١) ج: النهاد (٢) ب ، ج: ما ينهما . فقد استبان أن تحصيل الميل الأعظم مقصور على رصد الارتفاعين اللذين منهما تنقلب الشمس عما كانت فيه من تزايد الارتفاع اوتناقصه الى ضده، و الارتفاع في فلك نصف النهار يضبط بحلقة تلزم سطحه حتى توازيه فى الحس ، و يعلم بعضادة ذات هدفتين اما مستقيمة الصورة مركبة على مركز الحلقة ،وذلك لا يتهيأ الآ باحتشاء وسط ٥ الحلقة كله ، كالحال في ظهور الاسطرلابات أو بعضه بقطر او قطرين يخرجان فيها ليستبين بهها المركز ويتمكن فيهها القطب من العضادة، و اما مستديرة الصنعة يماسٌ ظاهرها باطن الحلقة فلا يزول عرب سطحها اما بمواسك عليها من الجانبين تمسّ وجهى الحلقة، و اما على وسط باطنها كأوتاد داخلة في جدول بازائها محفور بألخرط في باطن ١٠ الحلقة، و هي مع العضادة المستديرة هما الحلقتان اللتان ذكرهما بطلبيوس. و ظاهر ان هذه الحلق تحتاج الى التوسيع وتعظيم الجثة بحسبه ليتمكن من قسمتها بما أمكن من الاجزاء الدقيقة ، ثم أنها أذا عظمت لم تتجردً" عن لواحق طبيعية تغير شكلها حتى يطولها النقل في التعليق ويعرضهـــا الاعتباد و الضغط في النصب، فلهذا اشار بطلميوس الى لبنة في سطح فلك ١٥ نصف النهار يقوم ربع الدائرة المخطوط على وجهها مقام ربع تلك الحلقة و يقل فيها مع ذلك ما طرق الحلقة من الحُمَّلة ، و اليها اجرى اكثر المحدثين بعد ان عَظموها و صَيروها جدارا عاليا و تصرفوا في مأخذ العمل بها على انحا. شتى تملّ حكايتها . ⁽۱) من (۱) ب ، ج ، و في و : مقصود (۲) أن (۱ ب ج و في و : تنحر ذ . فاما مقدار هذا الميل الذي بقدر الزاوية الحادثة من تقاطع معدل النهار و منطقة البروج فاتفاق فرق الهند فيه على أنه اربع و عشرون جزءا، وكان هذا في القدماء رأيا شائعا فان ايرن المجانيق يقول في حل شكوك كتاب الاصول ان اقليدس إنما استخرج في المقالة الرابعة هذا الخسة ضلعا في الدائرة بسبب ان هذا مقدار الميل الاعظم، ثم هو عند بطليوس أنقص من ذلك بثمان دقائق و ثلثي دقيقة، و يذكر أنه رأى اراطيسانس و ابرخس و ان اعتباره شهد له بالصحة . و اما المحدثون من لدن زمن المأمون بن الرشيد فان أرصادهم تضافرت فيه على ثلاثة و عشرين جزءا و أزيد من نصف جزء ، ثم اختلفوا فى مقدار تلك الزيادة بسبب الوجود فى الآلة ، فرصد يحيى ابن ابى منصور ، بالشهاسية اوجبها ثلاث دقائق و وافقها رصد حكته المراوزة ، ممكن ان يكون يحى تولاه اذكان من هناك . و اما من وجدها أربع دقائق فان سند بن على حكى عن خالد المروزى وقد تولّى الاشراف عليه بدمشق أنه و جدها ثلاث دقائق و سبع و اثنتين و خمسين ثانية ، و حكى عن السند عنه انها ثلاث دقائق و سبع و عشرون و خمسون ثانية كما حكى آخرون عنه انها أربع دقائق و سبع و عشرون ثانية كما حكى آخرون عنه انها أربع دقائق و سبع و عشرون ثانية . ⁽۱) راجع مقدمة تاریخ الحکمة لجورج سا رطون ج ۱ ص ۲۰۸ و تاریخ الحکا. لابن للقفطی ص ۷۲ (۲) راجع مقدمة تاریخ الحکمة لجورج سارطون ج ۱ ص ۱۷۲ (۲) راجع مقدمة تاریخ الحکمة لجورج سارطون ج ۱ ص ۱۹۳ و تاریخ الحکمة لجورج سارطون ج ۱ ص ۱۹۳ و تاریخ الحکمة لجورج سارطون ص ۲۰۹ ، ۲۱۹ علی الترتیب المذکور. ⁽٤٦) وزعم و زعم منصور بن طلحة أنها وجدت في زمانه أربع دقائق ، و حكى محمد بن على المحكى مثله و لما عدل سليمان بن عصمة ارتفاعي المنقلبين في وجوده أياهما ببلخ باختلاف المنظركانت هذه الزيادة بهما ثلاث دقائق و اثنتين و اربعين ثانية٬ فاذا جبرت٬ الثواني في هذه الحكايات عند الزيادة. على نصف الدقيقة و القيت عند النقصان عنه تطابقت على اربع دقائق. ه فاما من وجدها خمس دقائق فانها في جدول الارتفاعات الدمشقية اربع دقائق و احدی و خمسون ثانیة؛ و وجدها محمد و احمد؛ ابنا موسی این شاکر بسر من رأی اربع دقائق و نصف، و ببغداد خمس دقائق، وهی عند سلمان بالارتفاعين غير المعدّ لين اربع دقائق و ثلثي دقيقة، و وجدها كل واحد من البتاني؛ بالرقة و ابي الحسين بن الصوفى بشيراز و ابي الوفاء ١٠ البوزجاني؛ و ابي حامد الصغاني ببغداد خمس دقائق، و وقع فيما بينهما ارصاد مخالفة لذلك، كعمل أبي الفضل أن العميد " بالري فأنه أوجبها عشر دقائق، و ذلك ظِاهر أن الخلل كان من الآلة، وكعمل ابي محمود الخجندي؛ بالري فا نه اوجبها دقیقتین و احدی و عشرین ثانیه؛ و قد اعترف لى صاحبه شفاها بفساد الآلة في احد المنقلبين، فاذاكان الحال على هذا ١٥ و ليس فيه غير التقليد بعد حصول الهداية للقصود و التهدى لمأ خذه مع الحرص على الحق و الثبوت عـلى الامانة و الصدق لم تسكن نفسي الى غير المشاهدة، فاعتبرته في حداثتي بظل المنقلب الصيغي مع الظل الذي ⁽١) راجع تاريخ الحكماء لابن القفطى ص ٢٧٦ (٢) ١ ب ، ج: اجبرت (٣) ١ ، ب: النبت . ⁽٤) راجع مقدم: تاریخ الحکمة لجورخ سارطون ج ۱ ص ۵۶۱ ، ۹۰۲ ، ۹۲۲ ، و تاریخ الحکاء لاین الفقطی ص ۶۶۰ لاین الفقطی ص ۶۶۰ کاریخ الحکاء لاین الفقطی ص ۶۶۰ لاسمت له في موضع من خوارزم عرضه احد و اربعون جزءا و ثلاثة اخماس جزء، و وجدت هذه الزيادة خمس دقائق و ثلاثة ارباع دقيقة، وعدت الى مثله بعد نيف وعشرين سنة وقست ارتفاع المنقلب الصيني مع ارتفاعات الايام التي حوله٬ و ذلك بجرجانية خوارزم في سنة سبع ه و اربع مائة للهجرة ، فوجدته احدا و سبعين جزءا و ثمان عشرة دقيقة ، ولما لم اثق بالتمكن من رصد ارتفاع المنقلب الآخر لماكان يتوقع من الاحوال؛ و لما في طبيعة البقعة من دوام الاغامة في ذلك الوقت رصدت فى ذلك اليوم ايضا الارتفاع الذى لا سمت له فكان انقص قليلا من ستة و ثلاثين جزءا و نصف٬ و انتجت مذه الزيادة منها خمس دقائق ١٠ و نصف و ثلث دقيقة، ثم تمّ الامر فيه بغزنة دار مملكة المشرق و رصدت بها اعظم الارتفاعات، فكان في يوم الاثنين الثامن من صفر سنة عشر وِ اربع ما تَهُ و في يوم الثلثاء و الاربعاء بعده ثمانين جزءًا لم يتفاوت بما يقدح في دقيقة شيئًا، و في السنة التي تتلوها يوم الحنيس الحادي و العشرين من صفر ثمانین جزءا سواء ایضا و رصدت اصغر ارتفاعات انصاف ١٥ النهار بها فوجدته في يوم الثلثاء الرابع عشر من شعبان في السنَّة المؤرخة اولا اثنين وثلاثين جزؤا و نصفا و ثلث جزؤ، و في اليومين المطيفين حوله بزيادة دقيقة واحدة ، و في السنة التي تليها يوم الخيس السادس و العشرين من شعبان آثنین و ثلاثین جزؤا و نصف و ثلث جزء، و یوم الاربعا. الذی تقدمه بزيادة دقيقة واحدة . ⁽١) من ﴿ وَفَى وَ : السَّخْتَ (٢) جَ : الطُّبْقِينَ . و معلوم ان الزيادة المذكورة يكون منها خمس دقائق، و لما انضافت المشاهدة الى ما تقدمت عنه الحكاية استقر الأمرقى مقدار الميل الأعظم على انه ما ثنان و ثلاثة و ثما نون جزءا من اربعة آلاف وثلاث ما ثة و عشرين جزءا للدور كلة، و ذلك ثلاثة و عشرون جزءا و ثلث و ربع جزء بالتى بها الدور كلة ثلاث مائة و ستين جزءا . و هل الى معرفة الميل الأعظم طريق بغير ارتفاعى المنقلبين . جواب هذا السؤال و ان لاق بالموضع فرتبة عمله متأخرة الى ما بعد عند تقرير الميل المقطع و اعتبلاء القطب المرتفع ، و لكن لابد من الاشارة . الله ، فليعلم ان احد هذين الارتفاعين اذا حصل على فلك نصف النهار مع ارتفاع في يومه قاصر عنه بالمقدار المعلوم السمت عن خط نصف النهار فانه يتدرّج منه الى معرفة الميل الأعظم كما فعلت بخوارزم ، و احكى عمله فيما بعد ، فان لم يكن ارتفاع نصف النهار للنقلب بل لموضع آخر عرف منه ميل الموضع جزئيا ، ولم يعلم منه أعظمه الآ بأن يعلم نفس ١٥ الموضع ، و لاسبيل الى معرفة ذلك بالرصد . و لمحمد بن صباح رسالة فى معرفة سعة مشرق المنقلب اورد طريق الحساب فيها دون البرهان لان اساس عمله تمهد للتساهل مبنى على غير ⁽١) راجع تاريخ الحكا. لابن القفطي ص ٥٩ - التحقيق، فانه اخذ فيه مسير الشمس في الازمان المتساوية مستويا و ليس كذلك؛ وطريقه انه رصد سعة المشرق ثلاث مرَّات في فصل واحد من فصول السنة بحيث يحلل المرّات مدتان متساويتان؛ ونحن نبرهن عمله ثم نزداد ايضاحا بعد تقطيع الميل و نجعل المرصود ميل الشمس، و انه . محصل من ارتفاعات انصاف النهار و هي اسهل رصدا من سعة المشارق؛ و منها يكون الخارج هو الميل الأعظم نفسه دون سعة المشرق الكلَّى . (١) فليكن فلك البروج: اب على مركز: ه ، و نقطة الاعتدال فيه: ١ ، ونفرض: ه ج ، مساويالجيبالميل ١٠ الأعظم٬ و ندر علىمركز:ه٬وبهذا البعددائرة:جمع وتسميها دائرة الميل وليكن الميل ١٥ المرصود في المرة الاولى: ج د ، ونخرج:ه د ب٬ فيكون: ب ، موضع الشمس المحصل ميله من اجل انا اذا انزلنا عمودي : د ف ، ب ص ، على : ١ ه ، كانت نسبة : ب ص ، جيب بعده عن الاعتدال ⁽١) ، ب: يحصل (٢) ابتدا. شكل: ٢٩ (٣) ج: ف ص. الى: ب ه ، الجيب كله ، كنسبة : دف ، الى : ده ، جيب الميل الأعظم، و يستبين ان: دف، مهما كان جيب ميل فانه لقوس: اب. و بالعكس و لهذا نسبنا هذه الدائرة الى الميل؛ ثم ليكن الميل الموجود في المرة الثانية : ج ز ، و في التَّالَثة : ج ح ، و نخرج : د ف ، عــــلي استقامته الى: ط و ، ونرى : زك ، ح ل ، على موازاته ، و نصل : د ل ، ه فیساوی : ز ك ، لمساواة قوسیهها ، و نقرر ۲ قوس : د م ، مساویة لقوس دل، و نصل: ح م، و ننزل عمود: د س، على : ح ل، فيقطع خط: ل ح م ، المنحني بنصفين ، و نجمع : ح ل ، ضعف جيب الميل الثالث الى : دط ، ضعف جيب الميل الاول ، فيجتمع الخط المنحني و ننصفه فيكون : ل س ، و نلقيه من ضعف جيب الميل الثالث او نلقي منه ١٠ ضعف جیب المیل الاول فیبقی بکلی الوجهین : س ح ، و نأخذ جذر فضل ما بین مربعی: س ل ، د ل ، فیکون عمود : د س ، و نخرج: د ه ، على استقامته الى: ع و نصل : ع ل ونيشابه مثلثا : د س ح ، ع ل د ، و تكون نسبة : د س ، إلى : س ح ، كنسبة : د ل ، إلى : ل ع ، فإذا ضربنا: س ح، في : د ل، وقسمنا المبلغ على : د س، خرج : ع ل، ١٥ و: دع، يقوى عليه وعلى: دلًّا، فاذا جمعنا مربع ما خرج لنا الى مربع ضعف جيب الميل الثاني اجتمع مربع: دع، و حاجتنا الى نصفه فنأخذ جذر ربعه فيكون : ه د ٬ جيب الميل الأعظم٬ و هو المطلوب في عمل محمد . ⁽۱) من ۱، ب، ج، و في و : نصل (۲) ب : نفرز (۳) ج : د٠٠ ## الباب الثانى فى تقطيع الميل الأعظم ومعرفة حصص درجات البروج منه بعد النقطة عن الخط يكون العمود الخارج منها اليه لأنه اقصر المسافات بينهما٬ وكذلك هو على سطح الكرة قوس من دائرة عظمي ه يقع بين النقطة و بين الدائرة التي بعدت عنها مارة على قطبيها ٬ و الابعاد اذا كانت لدرجات منطقة البروج سميت ميولا لأن الاستقامة منسوبة الى معدل النهار وهي مائلة عنه؛ و اذا كانت لنقط متنحية عن المنطقة سميت ابعادا عنه للتفرقة و ازالة الاشتباه، فميل الدرجة او النقطة اذن هو ما بينهما وبين معدل النهار من الدائرة التي تمرّ على قطبيه، و اما ١٠ الابعاد عن المنطقة فانها تسمى عروضا بالقياس اليها اذ هي الطول في حركات الكواكب، فعرض الكوكب او النقطة اذن قوس بينه و بين المنطقة من الدائرة العظيمة القائمة عليها وهي دائرة العرض، و متى مر على الدرجة دائرة من دوائر العروض سمى ما بينها و بين معدل النهار عرض الدرجة وهو بالحقيقة النقطة التي ينتهي اليها من
معدل النهار ١٥ · الَّا انها نقطة غير معينة ، فلذلك صارت النسبة الى الدرجات دونها اذ هي (٣) فليكن لمعرفة ميلكل درجة: ١ ؛ احدى نقطتي الاعتدال و: ١ - ٢ ربع معدل النهار على قطب: ط ، و: ا ز ، ربع منطقة البروج، و نفرض منها درجة : ب ، و نجيز على درجتي : ب ز ، دائرتين من دوائر الميول ⁽١) ب ، ج : قطها (٢) ب ، ج : لقطة (٣) ابتدا، شكل : ٣٠ . فیکون: ب ج ، میل درجة: ب ، التی تبعد عن نقطة الاعتدال قوس: اب ، و: زح ، میل درجة: ز ، التی تبعد عن: ا ، ربع دائرة فهی اذن درجة المنقلب و: اح ، المیل الاعظم الذی بقدر زاویة: ب ا ج ، و فی مثلث: اب ج ، نسبة جیب: اب ، الی جیب: ب ج ، کنسبة جیب زاویة: اج ب ، القائمة ، و هو نصف القطر اعنی جیب: از ، الی جیب ه زاویة: ب ا ج ، اعنی جیب: ز ح . #### و حسابه: اذا اردنا ميل الدرجة ضربنا جيب اقرب بعديها من اقرب الاعتدالين اليه في جيب الميـل الأعظم، و هو : (٠٠كد ، ٠ ، مح)، فيجتمع جيب ميل تلك الدرجة واحد بعديها عن الاعتدال هو الذي على .. توالى البروج، و الآخر هو الذي عبلي خلاف تواليها، و معلوم في عكس ذلك اذا كان ميل الدرجة معلوما و اردنا بعدها عن الاعتدال انا نقسم جيبه على جيب الميل الأعظم ويخرج جيب بعدها عنه وتمييز الربع الذي فيه الدرجة من ارباع المنقطة موكول الى فصول السنة الاربعة ' ان كان الربيع فقوس ما خرج هي البعد من اول برج الحمل ، و ان كان ١٥ الصيف فهي تتمته الى نصف الدور٬ و ان كان الخريف فهي فضله على نصف الدور، و ان كان الشتاء فهي تكملته الى الدور، ثم نفرض درجة: ه ، ایضا و نجیز علیها دائرة میلها فیکون : ه د ، و تکون نسبة جیب : اه، الى جيب: ه د، كنسبة جيب: أز، الى جيب: زح، ايضا، فنسبة جيب بعد كل درجة عن الاعتدال الى جيب ميلها نسبة واحدة ٢٠ ولدرجة: ب انظيرة تبعد عن: ا في الجانب الآخركبعد: اب و طما عرب جنبتي الاعتدال الآخردرجتان أخريان يقابلانهما و بالتقاطر، و ابعاد الاربع عن الاعتدالين متساوية و نسبها الى جيوب ميولها واحدة الميولهذه الدرجات الاربع متساوية ، فلذلك اقتصرنا فى تقطيع الميل على ربع الدور ، و وضعنا كل ميل بازاء اربع درجات فى سطور العدد يشترك مذا الاشتراك . (۱) و لمعرفة عرض الدرجة تخرج: بك من دائرة عظمى قائما على: ا ب و ملاقيا : زح على: س و هو قطب المنطقة و ندير على قطب ك و بعد ضلع المربع : ه ل د م و على قطب : س ايضا كذلك : ع ص م فنسبة جيب : س د المساوى : لزح الى جيب : د ل اكنسبة ع ص م الربع الى جيب : ص ع المساوى : لزب و نسبة جيب : م ل الربع الى جيب : ص ع المساوى : لزب و نسبة جيب : ه ل الما ع كنسبة جيب : ح س الما ع كنسبة جيب : ح س الما ع كنسبة جيب : ح س الى جيب : ل ك الربع كنسبة جيب : ح س الى جيب : س ك الما ع كنسبة جيب : ح س الى جيب : س ك الما ع كنسبة جيب : ح س الى جيب : س ك الما ع كنسبة جيب : ح س الى جيب : س ك ا #### وحسابه: اذا اردنا عرض الدرجة ضربنا جيب اقرب بعديها من اقرب المنقلين اليها في جيب الميل الأعظم، و قوسنا ما يحتمع في الجيوب و القينا قوسه من تسعين، و قسمنا على جيب ما يبقى جيب تمام الميل الأعظم و هو: (٠٠ ند، نطيط) و قوسنا، الخارج من القسمة في الجيوب، و القينا قوسه من تسعين فيبقى عرض الدرجة، و ايضا فان نسبة جيب: ابن الى جيب: از كنسبة ظل: بك الى ظل: زح . وحسامه: عط بالمحالة المحالة ا 4. نضرب جيب اقرب بعدى الدرجة من اقرب الاعتدالين اليها فى ظل الميل الاعظم ، و نقوس المجتمع فى الاظلال فيكون عرض الدرجة ، و لمثل ما فلنا وضعنا عروض الدرجات مع ميولها فى قرن ، فاذا ادخل بعد الدرجة من اول الحمل فى اربعة اسطر العدد وجد بحياله ، و عرضها و على رأس السطر جهته و صعوده فيها بالتزايد وهبوطه بالتناقص ، و اذا اردنا تقويس الميل و العرض اخذنا السطر الاول من الاربعة الاسطر فليس للاربعة بعضها على بعض مزبة الآان يتقدم لنا بالربع من فلك البروج معرفة من جهة اخرى فحينتذ نأخذ سطره . و هذا جدول ميول الدرجات و عروضها : ⁽١) ب ، ج : جدول . القانون المسعودي-ج ١ ٣٧٣ المقالة الرابعة جدول ميول الدرجات و عروضها | ات | درجب | ض ال | عروه | ي ا | ر جار | ول الد | <u></u> | صاعد | 1 | ها بر | صاعد | |-------|---------|--------|------------|----------------|--------|--------|---------|------|-------|-------|------| | ثوالث | ئوانى | رد اهم | اجزاء | ثوالث | ثوا بی | دقائق | اجزاء | ِ ب | جذو | بال | شم | | يط | اِ | کو | ; \ | | | | | | | قعط | 1 | | | | | | | | | | | قفب | | ب | | مد | Y | بج | } | ج | نط | لِ | 1 | شنز | قفج | قعز | ج | | + | لط | مد | | 40 | نز | al |) | شنو | قفد | قدو | ٥ | | مد | مج | ب | ب | من | نج | نط | 1 | شنه | قفه | قىه | ٥ | | צ | 44 | لو | ب ا | 7 | ع | کج | ب | شند | قفو | قعد | و | | ع | مج | ب | ج | ند | • | من | • | شنج | قفز | قدج | ر | | کب | لو | کح | ے | ند | J | يا | 5 | شنب | قفح | قعب | ح | | వ | کد | ند | ا ج | نب | نز | al | ج | شنا | قفط | قعا | ط | | بج | ٥ | 강 | د | کح | 1 | نط | ج | شن | قص | قع | ی | | | ما | 44 ' | د . | كز | ما | کب | د | شمط | قصا | قسط | ١ | | ح ا | يا | لِ | ٥ | یخ
مو | يز. | مو | د | شمح | قصب | قسح | یب | | من | J | لو | ٥ | مو | ع | ظ | ٥ | شمز | قصبح | قسز | يج | | کد | مج | } | i 1 | · · | | | | شمو | قصد | قسو | ید | | K | مو | کو | و . | کد
نب
مه | لو | نو | ٥ | شمه | قصه | قسه | 4)_ | | مط | ^ | نط | 9 | مه | ٔ نب | نط٢ | و | شمد | قصو | قسد | يو | | 41_ | کد
ا | يو
 | ز | مب | ب | مج | و | شمج | ا قصر | قسج | یر | (١) ج : كو (٢) ج : يط ، ب : نا . | 0 | لح | ٢ | | ً کد | | ا و | | شمب | | | بح | |-----|------------|------------|---------|------|----------|------------|------|------|--------|-----|----| | یزا | يط | 0 | ح | 6 | | كط | | اشما | i | | | | یز | الب | كط | ح | مط | نج | نا | | ' | , | قس | 실 | | نو | کح | ا نج | ح | بح | مل | ید | ۲ | شلط | ر۱ | | R | | ما | ید | يز | ا ط | + | ی | الز | ح | شلح | ر ب | قنح | کب | | | مو۲ | ٠ : | ط | يب | لز | نط | ح | شلز | رج | قنز | کج | | لب | 9 | د | ی | ب | نه | 5 | ط | شلو | ر د | قنو | کد | | یز | ی | کز | ی | ٤ | <u>ج</u> | ما | ط | شله | ر ه | | کہ | | 3 | • | ن | ی | مه | 7 | . · · · | ی | شلد | ر و | قند | 25 | | ند | الم | يب | ايا | مب | بج | ک ز | ی | شلج | ر ز | قنح | کز | | ز | نه | لد | ايا | لط | لج | مط | ی | شلب | رح | قنب | کح | | ی | نط | ; و | لِيا | و | ج | يا | الم | شلا | ر ط | قنا | 五 | | 五 | مو | ح | يب | مب | 5 | لب | يا | شل | ر ی | قن | J | | 4 ં | <u>ب</u> و | ۴ | يب | ح | كط | يج | ايا | شكط | ر یا | قط | K | | يز | A | <u> </u> | ج | مط | کد | ید | یب | شكح | ر يب | قح | لب | | و | کز | کب | يج | مب | 2 | . al | يب | شكز | ر بج | قمز | 夫 | | کج | و : | ع ا | بج | د | | ط | يب ا | شكو | ر يد | قمو | لد | | 7 | <u>کو</u> | _
ح | ید | بج | ع | يه | بج | شكم | ر يه | قه | al | | 2 | 7 | کج | ۔
با | K | دا | او | يج | شكد | ر يو | قد | لو | | ą; | يا | E | ید | .6 | ;و | نه ا | 3 | شكج | נ גי | قمج | لز | | 25 | لو | ب | يه | کج | لط | طن | يد | نكب | ر بح : | قب | 1 | (۱) ナ, チ; ¿ (۱) ナ, チ; «·» لط | -50 | ועו | | | | , , | | | | | | | |------|--------|------|-----------|------|------|-----|-----|-----|--------|------|------| | | ا ما : | | | ۲ | بح | | | | | قا | | | يج | کج' | ^ | به | K | ز | | | | | قم | ٢ | | 3 | ا ج | ا بح | يه | الو | 1 | 7 | 4, | شيط | ركا | قلط | ا ما | | يط | يط | يو | يو ا | اع ا | ۲ | 7 | يه | شيح | ر کب | قلح | مب | | + | مه ا | لد | ا يو | 8 | ج | ن | يه | شيز | ر کج | قلز | بج | | | ی | | | • | 1 | ح | | A . | | قلو | | | نج | 41_ | ط | يز | لط | • | کز۲ | يو | شيه | ر که | قله | مه | | نه | يط | کح | <u>پر</u> | اب | لج | بج | يو | شيد | د کو | قلد | مو | | + | کج | مب | ين | او | مط | • | ير. | شيج | ر کز | قلج | من | | | 2 | | | 7 | مو . | یز | | 1 | ر کح | | | | لب ا | و | ید | يح | لح | 25 | لد | | 4 | ر کط | | مط | | 25 | کہ | كط | بح | 7 | زا | ن٠ | ٠, | شی | ر ل | قل | ن | | لط | کج ا | مد | یح ا | کو | نج | و | بح | | | قكط | | | کد | نط | خ : | يح | كط | لز | كب | ع | شح | ر لب | قكح | نب | | \$ | بج | بج | بط | د | ب | + | بح | شز | د لج | قكز | نج | | لط | ٥ | كب | يط | ن | • | نج | ع | شو | ر لد | قكو | ند | | ب | لو | ^ | يط | کو. | ľ | ز | يط | شه | ر له | قكه | di | | 1. | مد | نج | يط | + | نه | کب | يط | شد | ر لو | قكد | ie | | ٤ | كط | • | 1 | مز | 3 | او | يط | شج | ر لز | قكج | نز | | له | نج | ٤ | 1 4 | نا | : | ن | يط | شب | ر لح ، | قىكب | خ | | 4. | يه | ل | ځ | کب | K | ج | এ | شا | ر لط | قكا | نط | | | | | | | | | | | | | | ⁽١) ب، ج: که (٢) ب، ج: کو . | يو | لج | مب | 실 | ب | 5] | يو | ٤ | م ا ش | ا د ٠ | قك | س | |------|------|-----|------|-----|-----|----------|---------|----------|-------------|-------------|----------------------| | من | مط | نج | 쇠 | لح | او | کح | غ | ما ارصط | ار ، | قيط | سا | | کج | مح | د | 6 | مح | ی | ما | ك | ب ر صح | رم | قيح | سب | | ن | يد | يه | کا | ايا | ب | نج | <u></u> | ج د صر | ر م | قبز | سج | | مط | كب | که | ধ | 7 | J | د | 8 | د رصو | ٔ ر م | قيو | سد | | 긔 | 7 | له | 8 | بج | al | به | 8 | له رصه | ر ه | قيه | سه | | 0 | لب | | 8 | از | پو | 2 | 5 | مو رصد | :
¦ر، | قيد | سو ا | | له | Y | · ÷ | 6 | ج | لد | الو | 8 | ن د صب | ر م | قيج | سز | | يب | _ | ب | كب | د | کو' | مو | 8 | ح ارصب | ر ہ | قيب | سح | | یج ا | کج : | ی | کب | ج | نه | ą, | R | طارصا | أر م | قيا | اسط | | مد | ید | بح | کب | نب | يط | 3 | کب | ن ار ص | ار | قى | ع | | તો : | مج | 25 | کب ا | نو | ع. | <i>£</i> | ک | نا رفط | ٔ ر | قط | عا | | 2 | مط | ب | کب | 1 | نج | 5 | کب | ب رفح | ۔
ار ن | قح | عب | | ط | لب | لط | کب | کد | لم | كط" | کب | نج ر فز | ار | قـ ز | عج | | يط | ا نب | مه | کب | یج | ح | لز | كب | ند ر فو | اد | قو | عد | | ند | مح | t | ک | كط | } | مد | کب | نه رفه | ا ر | قــه | 4C | | نط | کب | نز | کب | d, | ڹ | ن | کب | نو رفد | !
. ر | قىد | عو | | مح | بخ : | ب | کج | k | لرز | نو | ک | نز رفح | ٠. | قح | عز | | يط | 6 | ز | کج | بح | يو | ب | كج | مح رفب | ٠ ر | قب | ع م ح
 | | ط | مو ا | يا | کج | بل | کح | ل | کج | ط رفا | ٔ ر ز | ق | عط | | ج | مح | يه | کج | نز | لج | يب | کج | ں ر ف | ر س | ق | ا ف | | | | | | | | | | | | | | (۱) ب ، ج: کر (۲) ج: مط (۳) ب : ز ، | K | 5 | بط, | کح | لو | ل | <u> </u> | کج | ر عط | ر سا | صط | افا | |----|----|-----|-----|------|----|----------|----|------|-------|----|-----| | | | | | | | | | | | صح | | | • | | ! | , – | • | | | | | | صز | · | | مه | د | کح | کج | ا نز | مو | کو | کج | رعو | رسد | صو | فد | | | | | | | | | | | | صه | | | ح | 4 | K | كج | عا | 4 | Y | کج | ر عد | رسو | صد | فو | | 1 | 4, | 1 | کج | ځ' | نو | لب | کج | رعج | ر سز | صج | فز | | ز | £ | لد | کج | ح | • | لد | کج | رعب | ر سعح | صب | فح | | 7 | مز | لد | کج | یز | مو | لد | کج | ر عا | رسط | صا | فط | | | • | کله | کج | • | ٠ | له | كج | ر ع | ر ع | ص | ص | # الباب الثالث فى مطالع خط الاستواء مع فلك البروج وعكسها بالحساب والجداول اذا اردنا معرفة ما يطلع
فى أفق خط الاستواء من ازمان معدل النهار مع درجات سوا. لقوس مفروضة من منطقة البروج اخذنا بعد اولها من اول برج الحمل و تقحناه بان نتركه كما هو ان كان فى الربع الاول، و تأخذ فضل ما بينه و بين مائة و ثمانين ان كان فى الربع الثانى او الثالث، و ننقصه من ثلاث ما ثـة و ستين ان كان فى الربع الرابع، فيحصل البعد المنقح، ثم ان شئنا ضربنا جيبه فى جيب تمام الميل الاعظم ⁽۱) ح: ج و قسمنا ما بلغ على جيب تمام ميل الدرجة اعنى مبدأ القوس، فيخرج جيب المطالع، و ان شئنا قسمنا جيب تمام البعد المنقح على جيب تمام ميل الدرجة فيخرج جيب تمام المطالع . و ان اردناها بالظل قسمنا ظل ميل الدرجة على ظل الميل الأعظم ه و هو : (٠٠كو ١٠ يا ٢ يج) ، فيخرج جيب المطالع، ثم نعود الى التنقيح و نعكسه، اعنى ان كان مبدأ القوس في الربع الاول تركنا قوس المطالع كما هي، و أن كان في الثاني نقصنا ها من مائة و ثمانين، فأن كان في الثالث زدناها على مائة وثمانين٬ و ان كان في الرابع نقصناها من ثلاث مائة و ستين، فيحصل المطالع مبدأ القوس من عند اول الحمل . ثم نعمل باجزاء القوس المفروضة و منتهاها مثل ذلك بعينه حتى يحصل مطالعه من اول الحمل ايضاً و متى القينا الأقل من الأكثر بقي مطالع تلك القوس المفروضة في خط الاستواء، وعلى هذا وضعناها في الجدول لدرجة درجة من درج السوا. في فلك البروج مفروغا من حسا بھا۔ [و هذا هو الجدول-] ⁽١) ج: كز (٢) ما بين الحاجرين من ج، ب. | | لرابعة | لقالة ا | J | | | 479 | | دی ج - ۱ | المسعود | نون ا | القا | |----------|-----------|------------|-------------------|-------------|---------------|--|------------|--------------------------------|------------|---------|------------------| | | Ą | C | ٧. | 断 | , | لن | ه | ئواك | رم | | | | | c. | ·Ĺ | ď | <i>S</i> : | ٠٤٦ | ė. | رمر | ئوانی | ٤ | نل | | | | ب | ٦. | سنم | | ا
بو | C | o . | دقائق |]; | السره | | | | 8 | م و | ŧ | ŧ | J. | | 5 | ناله | ·[_ | | | | | \f | C.¢ | e e | ٤. | ٤, | ٤. | • | ثوالث | روم | | | | | ₩. | 9 | Ċ, | Ç | 5 | ţ | ٠ | ili | ٤ | وزاء | يو اء | | | 7 | | 4 | U. | . | .{. | C· | c d & |]; | 1 | 1 | | <u>۱</u> | <u></u> { | ં, | ٠{ ˜ | | ç | b. | M. | ازمان | ٠. | | ن خط | | <u>.</u> | ٠٤. | (Z) | 5 | \$ | ع. | 0 | 3; | ئوا <u>ا</u> ت | - > | | ()
(ré. | | | | | | | | | | | | | • | | | هو | 15 | ~ | رجر
درجر | ٤ | | ex | :લક <u>્</u> | اثا | رد | م البرو | | | ان ا مو | PT 59 | 8 | نه
نیم | <u>ه</u>
څ | ٠,٠ | در | | لثاً النا | الثور | ، مطالع البرو | | | لد از مو | में मा भ | ر م | | | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | | | | الثور | جدول مطالع البرو | | | ٧٠. | T 7 F J | الم الله عام الله | U. | \$ | \ \frac{\chi}{\chi} | | دقائق |
Ł | الثور | جدول مطالع البرو | | | ٧٠. | 上 中子一丁 | ·(_ | ス | \$ | \ \frac{\chi}{\chi} | رهم | ازمان
دقائق | 74 15 | ل الثور | جدول مطالع البرو | | | ال
الا | 日子山大山 | ٦. | ス | \$
C | が | رجر | واك
ازمان
دقائق | يب كط لد | الحيل | جدول مطالع البرو | | | ال
الا | 一世一一一一一 | ٦. | ス | \$
C | が | رجر جو | ئوان
نواث
ازمان
دقائق | د ين كظ لد | الحمل | جدول مطالع البرو | | | ار ابعة
 | عالة ا | 11 | | | ٣٨٠ | | -ج ۱ | ودي. | المسع | نانون | ال
 | |-------------|-------------|---------------|--|-----|----------|------------------|-------------|---------------|------------|-------------------|------------|------------| | | ()r | G. | (A | - | 4 | C. | ٠(| C : | ځ. | ئن | <i>S</i> : | ·C | | | 时 | ٠,٤ | Ł. | અ | c. | 7 | <u>L</u> | سنا | æ | 8 | من | . , | | 3 | ڪ | 4 | س | ٠٤٦ | <u>.</u> | (;h | 7 | M | r. | (.√r. | ß | B | | | œ. | F. | ൂ. | ٧؋١ | ني. | & . | ۴, | .٤٠ | ۲. | c: | مط | a | | المول . | ; | Y | <i>U</i> , | | | | Ì | | | | | | | في جيمي الا | á. | | F | | | | | | | | | | | 125 (7) | _ | ٠٤. | 6 | ون | .{ | سعا | 4 | 8 | ध्य | شا | je | .2 | | . (| æ | Je. | የ | J. | (A | 3. | 5 | C | 7 | ري ⁻ _ | 4 | 1 | | ، وفي و ، | (L | ٠٤ | J · C | 4, | ٤ | <i>?</i> : | .{ | c | 2 | 4 | U | • | | €.
(•) | 1 | بح | ,=- | 7 | ہو | ے | • | \ \ \$ | بنا | E | 3: | ع, | | المذكور (۲) | C | <u>_</u> | <u> </u> | C | C., | C | 2 | 12 | ٠٢ | 4 | ٤ | لى | | التريب | 48 | \$ | \$ | Ų | .{ | 5 | - | <u>F</u> | 14 | ٠ | لو | - | | ، مط ، على | Le | . (c | را بو | V | لون | . ^ا ن | \ | <u>.</u> | <i>S</i> : | ß | ۷. | 0 | | لد بسر | C | ا رد | 6 | نوم | þ | ٠ ڔ. | ů | ょ | M | 8 | J.E | 9 | | و : د س | C | ۔ ا | . b | Ç | 3. | .3. | (e . | _ | • | C | 4, | الله الله | | (J. | ېږ | 1 /2 | ٠,٨ | ٤, | (h | . ;[| , - | . 16- | e | 4 | 7 | ر. | | 3 | . b | - \mathcal{U} | <u>, </u> | 15 | ع. | ع, ا | 1.4 | 3; | 10- | e. | 16 | 7 | | | f | <u>ا</u> | (٤٨ | .) | | | | | | | | | | | الرابعة | المقالة | | | ۲ | Ά1 | | -ج ۱ | بو دی | ، المسه | القاً نون | |--------------------------------------|------------|------------|-------------|-----------|----------------|------------|------------------|------------|-------------|------------|-----------------| | | R | • | نعم | ه | ها | C. | .{ | (;\tau) | 4 | ڪ | .6- | | • | ٤ | i • | چ ۽ | ۳ | ļe. | _ | γ- | • | } | ٤ | سعا | | | 3; | ď | [| V | _ | ↑ . | ٤. | د - | <i>S</i> : | <u>ښ</u> | F | | | 1 22 / 22- | | | | | | | | ર્ધ. | | | | | | | Y | | | | | | ひ | | | | | j | - | ,4 | | | | | | (Jr | | | | | • | Ł . | \$ | ₩. | 7 | ·[_ | سنم | ٠٤٦ | بو | ,- | L | | ٠
لو | É | ત . | \i . | . | & . | ٠, | ા . | ٠٤. | 6. | C . | P | | .ن ن | ·Ĺ | لو | .3. | 7 | <i>c</i> | لعر | <u>C</u> . | (·+ | ر. | <i>S</i> : | ٤. | | ول (٤) م | 2 | _ | 4 | ₩ | | 6 | 7 | U, | ď | .=- | ኳ | | مني الرم | 1 . | • | ! | - | - | | 1 | | ∵ +- | | 1 | | ا) کذا فی | ٧٠. | ٠٤. | . | ٤. | (n. | ·(. | | c. | þ | Cr | \ _{\$} | | 7) 7:7 | ·{. | Ur. | v | ر.
 | ريم | | ابهم | <u> </u> | ٠٤٦ | <u>_</u> | 0 | | <u>.</u> | 1 | | | | | | | | ر.
- | | | |) z:c | W. | ، ه | ₩ . | · — | D | n | ٠, حــ | ٠, ٥ | .b- | ٠٤٦ | لعم | | | س | س | 2 | <u>لم</u> | ኣ | ابهم | ٠٤٦ | প | ك | .6 | w | | $\widehat{\boldsymbol{\varepsilon}}$ | <u>_</u> | 5 | UN. | 44 | العم | 4 | <u></u> 5 | نجر | ٠٤٦ | σ | ئا : | | الرابعة | لقالة | 1 | | ۲۸ | ۲ | ج ۱ | لمسعودی – | القانون ا | | |---------|------------------|-------------|----------|------------|-----------------|---------------|---------------|-------------|----------| | ·{. | رمر | F | \$ | ھ, | 0 | · · { . | ثوالث | | | | ٠ | 断 | or | ريم | <u>ه</u> | <i>ب</i> . | فعر | સ્હ | ¿(12 | | | ب | E | 5 | ß | \$ | \. ⁻ | ٠. | دقائق | ٤. | | | ں ہے | ر
نه | ;
;{ | اد ا | 5 | 6 | ر ک | ازمان | 断 | | | | <u>.</u> ر | .b- | ۹ | 8 | • | نې | ئواك. | ·£. | | | ₩. | . . | C | • | b . | b : | b . | <u>ંત</u> ્ર | (| <u>-</u> | | 8 | C | ڪ | • | ملم | þ | Ŀ. | <u>رقائق</u> | 14.
14. | الاستو | | وهم و | ē: | نفد | €; | ا | 8: | £; | اذمان | ٠,٦ | ф.
С | | رم | س | b. | بن | (.\psi | ٠ | .{ | درائ | ·£. | 379 | | ٤ | \boldsymbol{C} | ڪ | æ. | ٠ | , | Ç. | نوانی | ں نھ | م البر | | ۶ | (h | | ٤. | <u>۴.</u> | | U | دقائق | السند السند | مطال | | Ğ. | ري.
انځ | ر فوز | દે. | ٤. | ا فو | .€.' | اذمان | کنم | جدول | | لينم | <u>_</u> | ب | C· | 3; | Ç | 5 | نوا <i>لث</i> | - | | | 5 | 9 | C· | α | <u>\</u> e | 3; | ₩ | ار ای ا
ا | <u> </u> | | | 8 | 4 | ٠٢ | 9 | .b | ېرن | ٤, | دفائق | ا الآ | | | 134 | رجي | <u>کن</u> | 3 | \$ | 3 | ارجي.
الجي | ازمان | 点 | | | ζ. | (| 0 | U | M | ٠(| - | دري. | 11 | | (1) 亡, 马: (4) 亡, 马: (1) | | الرابعة | لقالة | J | | | ۲۸ | ٣ | 1- | دی ج | المسعو | انون | الق | |---|------------|---------------|----------------|----------|----------|------------|---------------|------------|----------------|----------------|----------------------------|-----------------| | | (Jr. | ٠[_ | ٠.(| ٠, ٢ | ٤ | ۲, | .{ | ď | 2 | () | M | v | | | þ | ধ | , | 'n | ٻو | ٤ | 0 | 4 | Ų. | 巨 | ·{. | ٦. | | | C | C | <u>_</u> | <u>_</u> | <u>_</u> | <u>_</u> | ~ | 4 | .[_ | (1 | ٤ــ | ب | | | العم | 5 | بير | ريم | بل. | 5 | <u>ا</u>
ا | <u>'</u> | ش | ريز | ابي
ن | ه <u>.</u>
ل | | | | | | | | | _ | | ! | : | | | | | | | | | | | √ | | İ | | · | | | | 1 | | | | | | آ ور | | i | | | | | ٠.
ن : ن | è. | . | & . | to. | € | . 6 | 6 , | b . | & . | <u> </u> | ري.
ا | :
فهر | | ارق) ہا | いか | (∵ /v | b . | ٤ | نجر | ٠. | ٤ | ·(_ | ध् | ع ي. | ب ر | ~ | | ني رن | | | | | | | | | | | | 3; | | : نو (٤) ا | (N. | Λ. | M | ٠. | :[| ړو | شا | 8 | 5 | (·+ | ٠ <u>.</u> | ~ | | : سو (۴) كذا فى جميع الاصول (٣) مپ ، ج : نو (٤) | 4 | J. | J. | ٠. | · deme | £. | ۲. | بار. | | [. | ر | b:, | | رصول (۲) | b _ | C. | ₩. | €.V. | لعم | <u>A</u> | 4 | B | ڼ | \bigcirc | 1.4. | 4. | | ا في جيم الا | ٠٢ | (*). | ٤. | દ્ય | (Jr | == | ₩ | ٤. | <i>c</i> | ڪ | $\mathcal{C}_{\mathbf{r}}$ | þ- | | یو (۲) کذ | كنم | æ | R | 5 | 5 | E | 5 | 5 | 5 | B | ښ | سرحم | | ί.
ώ. | . | €. | افا | (F) | تطن | تظو | ا ها | ولد | <u>ر</u> | . (| کے | <u>.</u> | | ε | , b- | ₩. | ړړ٠ | \e_ | . ھ | ٦٠ | (h | ;{ | ۔۔ | S | 6 | 7 | | | الرابعة | لقالة ا
ــــــــــــــــــــــــــــــــــــ | LI. | | | ۲۸٤ | 1 | -ج | هو دی | ن المس | القانونا | |---------------|------------|---|-----|------------|------------|---------------|-------------|------------|-------|------------|------------| | | ·[| نو | }; | Ç | C. | ধ | C. . | ·4- | Ļ, | ۲. | ,نړ٠ | | | | | | | | 6- | | | | | | | | (; | \$ | .{ | ~ | 4 | ٤٠ | ڪ | ٤ | 1.4 | ·[_ | ~ | | | نان | ن لو | ٤ | ٤ | 4 | ر
آ | بح | ر ل | 1 | رهم | ريم | | | ٠٤. | 7 | U | ζ, | ربحر | | ريم | ·C | ٠٤٦ | C | ٥ | | | i | : | 1 | | | Eq | | . —— | | | 1 | | • | U.P. | ۶, | M. | _ | • | \bigcap | , | چ, | , b | ٠٤٦ | لحم | | ، المذكور | لْمَ | | | | | | | | | | l | | على الدريب | • | بن | æ. | ڪ | 15- | 2- | rey | 时 | &. | ŀλ | <u> </u> | | ره دره
 • | • | | • | b : | <u>, (e</u> . | .}. | 6 | 4 | سم | ₩. | | ; (,) ; | • | • | e | . . | .6- | ち | b 7 | ٤ | E | } | b - | | ج وق و | ٤. | قعط | Œ. | ر.
ده | ر و ا | ٤. | £. | ₫ . | ·{. | €, | ൂ. | | نه (۲) خ
خ | 7 | ~ | ₽. | \$ | ع. | 5 | ·[_ | 7 | (J.) | ν. | نوم | | ٤:٠٠ | ع. | 4 | · (| 5 | رو | ڪ | C | ₩. | \$ | ر. | ك | | ٠
(٦) د | | 4- | }; | 4, | Ļe | w | ڪا | ٠٢ | لجي | 87 | سر | | ÷;5; | | E . | Ć. | b . | G . | ا مغ | نوه
نوه | £. | £., | િ . | ٠٠. | | υ
Ξ | C | 67 | رم | بنم | سوم | M | یر | ربير | ٠٤٦ | 9 | شا | | | ول. | جد | | | | | | | | | | | ٣ | Λ | ٥ | |---|---|---| | الرابه | لمقالة | 3 | | ٣. | Vo | ر
—— | سعو دی – <u>-</u>
 | | العادو | _ | |------------|--------|----------|-----|-------------|-----------|-----------|-----------------------|----------|----------|---------| | روم | ب | b. | ب | (% | ٠٠. | ځ. | ئو الث | - | ٠٤. | | | 2 | \Box | ڪ | e. | ر. | ۔۔، | ر. | स्टि | Ģ | U | | | \$ | ~ | c. | ٤. | (*. | | V | (8) | 4 | (·/· | | | 7: | فلن | شلو | ŧ. | 4. | 4. | شلب | んしょ | | بخر | | | ننم | C | ٠ | C. | 3; | ~ | ኳ | ثواك | | ~ | : | | 5 | 9 | آ.با | 7 | ِ رو آ
ا | 3; | Ċţ. | ુલ | ٠ | ধ্য | تواء | | 87 | ኳ | ٠٤٦ | 不 | .6 | . | ٦. | <u> त्र</u> ् | الدا | ح. ا | | | 5 a | ď. | ₹. | 4 | £ 1. | | <u>ښ.</u> | たられい | | 74 | نط | | ₩, | | ٧٠. | 5 | , | Ų. | ی | ئواك | | | 37.0 | | c. | ·[_ | ر. | ٦, | ٠٤٦ | ₽. | a | îel is | لدى | ٤. | الم الم | | بن | ·[_ | لنم | 9 | بو | ۳ | • | دقائق | <u>.</u> | 3; | ، مطال | | رعز | رعو | Å | رعد | 4 | ر
ع). | 6 | しているこ | |)·{_ | جدول | | \ | U. | C | ٤. | ٦. | ٤ | • | ثواك | | ~ | | | €1 | ~ | <i>ښ</i> | Ç\$ | E | 5 | • | ૌર્દાઇ | ć | ٤ | | | 7 | | | Λ. | ٤. | ٠٤. | C· | دقائق | القوس |]; | | | \$ | ر کم | ر
گ | 5 | <u>-</u> ه | E | 7 | الازمان | | · (_ | | | L. | | 0 | V | n | (| | ردع | السواء | | | (1) 亡, 己:中(1) 亡, 己:氏(1) 亡, 己:。 المقالة الرابعة القانون المسعودي –ج ۱ ۲۸۶ (7) (7+ t. E (2) 4. E . C ty e. C e . [c. .[1. :[1/2 12 BY 五八十 EL C. UV UV FOUR & F. C. Col & US UV. 8. 8 M = 13 E 听听时斯斯斯斯斯斯 b c . C c E. & C. (1 (2) (2) (2) (2) 100 . Ed 52 64 64 64 64 64 64 64 64 E G. F- 176. 18. . es . <u>ھ</u>. ر السر لوز الو c-· c w c 0 } ر *ا*گم 4 ٤ E 4 4 . (1- 17- 18 17 12 E 13 F. F. W. . E. ₩. 3; 43 C F 1 ٦, Ch ŗ. يو | الرابعة | المقالة الرابعة | | | | ۳۸۷ | القانون المسعودى ج – ۱ | | | | | |-----------------|-----------------|---------------|-----------|------------|-------------|------------------------|------------|--------------|----------|----------| | | است | e. | <u>e.</u> | ٠, | 5 | R | 断 | . & | G | ۽ ٽي | | • | • | • | • | b . | L e. | ·{. | ٠ | 4 | ربر | cv. | | | 0 | \mathcal{C} | ٠, ه | -,b- | ち | 5 | ٤ | F | t | þ | | \ \{ \{ \}_* \} | b : | <u>(</u> ; | ئى
ھ | شنو | [. | t; | بې: | .{; | | ξ.
C· | | 7 | \sim | ₽. | È | ٠, ٨ | 9 | ٠(_ | (1 | 7 | ٠. | سنم | | ٤. | 7 | .(| ध् | ب | ~ | <u>_</u> | <i>₩</i> | \$ | <u>.</u> | ڪا | | • | 6 | ;ξ | ٦. | بي | ₩. | شا | ٠٤٦ | ત્ય | اح | ٠٤٦ | | 1. | ¥ | Ç. | يكط | 4 | Ž, | المجر | ₹ <u>`</u> | , K | رئ
رئ | ئې. | | رچى | | نعم | ٩ | • | c. | .{ | (ir | ~ | ٤ | 1.6 | | ٤ | • | ٠, هـ | 6 | ا ا | | 7+ | • | E | ٤ | : لو | |]; | . <i>C</i> | ا
ر. | v | _ | % . | F. | | <i>\</i> : | . (Jr | 巨 | | · | [- | ζ. | رعط | رقو | نصو | É | م | (g | E | 6 | | | C. | b 7 | þ | ~ | (A) | b . | ŗ. | ሎ. | (h | ربح | | 7 | ~ | v | ب | 3; | • | ښ | , | ₩ . | .{ | کے | | ٠ ١٠ ١٠ ٢ ١ | ٤. | 5 | (Jr | 7 | ٠. | سنا | ٠٤٦ | , ' e | | • | | 2 5 | J | ن
س | رسو | ع ا | t | <u></u> | ·{ | [| Ç | b. | | C | b5 | R | لنم | سر | 8 | ٤ | رجم | ٠٤٦ | 9 | شا | فاما اذا كانت عندنا مطالع فى خط الاستواء مأخوذة من اول الحمل و اردنا قوسها من فلك البروج المسهاة درج السواء ادخلناها فى جدول المطالع فوجدنا المطلوب بحيالها، و ان بتى منها بقية قسمناها على فضل ما بين الموجود فى المطالع و بين ما يتلوه تحته و زدنا ما يخرج على ما اخذناه من درج السواء فيكون المطلوب . و ان اردنا ذلك بالحساب دون الجداول نقحنا المطالع على مثال تنقيحنا البعد، ثم ضربنا جيب تمام المنقح فى جيب الميل الأعظم و قوسنا ما بلغ فى جدول الجيوب و القينا قوسه من تسعين، و قسمنا على جيب ما يبقى جيب المنقح فيخرج جيب درج السواء، و ان شئنا ضربنا ظل ما تمام المنقح فى جيب تمام الميل الأعظم فيجتمع ظل درج السواء، ثم نعود الى ما عملناه فى التنقيح و نستعمل عكسه كما تقدم فى استخراج المطالع حتى يحصل بعد الدرجة السواء التى بها تماك المطالع من اول برج الحمل . و نقول لايضاح ماتقدم ان بمطالع القوس المفروضة هي الازمان التي تطلع معها من افق الموضع المفروض، فان لم يكن للموضع عرض فهو على خط الاستواء وافقه مآرا على قطبي الكل و الجميع دوائر الميول قوة هذا الأفق من اجل مرورها على هذين القطبين، و افلاك انصاف نهاز جميع المواضع كذلك سواء كان لها عرض او عدمته، و بسببه صار مرور المنطقة عليها وأحدا و مشاكلا في الأزمان لمطالع خط الاستواء، ⁽١) ج: يتلو (٢) ب ، ج: لها . وهذه المطالع هى التى تسمى مطالع الفلك المستقيم الله ان اضافتها الى المسكن اولى و ابعد من الشبه و وساوس غير المرتاضين و أعم للتسمية فيما تعلق بعروض المواضع . (١) و نعيد لها القطاع الأول و فيه قوس : ا ب، من فلك البروج مفروضة و ميلها: بج، و دائرته : ط بج، و هي احد آفاق خط الاستواء، و معلوم ان ازمان : اج، تطلع فيه مع درجات: اب، بالسوا، وهي اذن مطالعها فيه و سوا، سكنا الأفق و ادرنا الكرة اوسكنا الكرة و ادرنا الأفق، وفي هذا القطاع نسبة جيب: اب، درج السوا، اللي جيب: اج، ازمان المطالع كنسبة جيب: ب ط، تمام ميل: ب الى جيب طز، تمام الميل الأعظم، وعلى هذا مبنى الوجه الاول مما تقدم، و فيه ايضا نسبة جيب: طب، تمام ميل الدرجة الى جيب: ١٥ برز، تمام درج السوا، كنسبة جيب: طج، الربع الى جيب: جح، تمام المطالع وهو مبنى الوجه الثانى، وفيه ايضا نسبة جيب: اج، المطالع الى جيب: اح، الربع كنسبة ظل : جب، ميل الدرجة الى ظل المطالع الى جيب: اح، الربع كنسبة ظل : جب، ميل الدرجة الى ظل از ح، الميل الاعظم، و تلقيت الدرجات بالسوا، اصطلح لولا اشتهاره لكانت الازمان في ذواتها، و بالقياس الى الحركة الغربية ٢٠ ⁽۱) ابتداء شکل : ۳۲ (۲) من ب، ج و في و : اى . الاولى اولى بهذا اللقب، ثم يخرج ليعكس هذه المطالع الى الدرجات السوا دوائر القطاع على استداراتها و ندير عـــلى قطبى : ب ١٠ و ببعد ضلع المربع قوسى: ٥ ك ل ع م س ع ، فاما فى طريق الجيوب فيكون نسبة جيب: ال ، تمام مطالع: اج ، الى جيب: ل ك ، كنسبة جيك: ه اس ُ الربع الى جيب : س م ُ اعنى : ز ح ُ الميل الْاعظم ُ و اما بطريق الاظلال فان نسبة جيب: زط، تمام الميل الأعظم الى جيب: طح، الربع كنسبة ظل: زب، تمام للدرجات الى ظل: حج، تمام الأزمان. و قد حصل لمعرفة عروض الدرجات طريق سهل و هو ان يؤخذ بعد الدرجة من اول الحمل و يدخل به في مطالع خطَّ الاستواء و يؤخذ ١٠ ما بحياله من درج السواء في برجها ؛ فيكون ميل ما يؤخذ عرض الدرجة ؛ و ذلك أنا أذا أخرجنا من درجة : ب، دائرة من دوائر العروض القائمة على : اب ، وهي التي منها قوس : ب ص ، ثم احتسبنا ببعد درجة : ب ، من أول الحمل مطالع في خط الاستواء كان : ا ص ، درجها السواء وميلها : ص ب ، لكن هذا الميل هو عرض درجة : ب ، فهو ١٥ اذن معلوم بسهولة من غيرضرب او قسمة . # الباب الرابع في استخراج بعد الكوكب ذي العرض عن معدل النهار اذا لم يكن للكوكب عرض و لم يكن في احد الاعتدالين كان بعده عن معدّل النهار هو ميل درجة، ثم انكان ذا عرض صار بعده غير ٢٠ ذلك الميل؛ فاذا اردنا معرفته زدنا على بعد درجة الكوكب من اول الحمل الحل تسعين درجة و ضربنا جيب الجملة في جيب تمام عرض الكوكب، فجتمع جيب نَقوَّ سه و نأخذ جيب تمامها فيكون المحفوظ، و نقسم جيب تمام عرض الكوكب على المحفوظ فيخرج جيب قوس التعديل٬ فان كان عرض الكوكب و ميل درجته فى جهة واحدة زدنا قوس التعديل على الميل الأعظم؛ فيجتمع القوس المعدلة في جهة ميل الدرجة، و ان كانا م في جهتين مختلفتين اخذنا فضل ما بين قوس التعديل و بين الميل الأعظم فيكون القوس المعدلة في جهة الأكثر من عرض الكوكب و ميل الدرجة، ثم نضرب جيب القوس المعدلة في المحفوظ فيجتمع جيب بعد الكوكب عن معدُّ ل النهار في جهة القوس المعدلة . و ان شئنا أخذنا عَرض الكوكب وعرض درجته و جمعناهما ان ١٠ كانا في جهة واحدة و اخذنا فضل ما ببنهما ان كانا في جهتين مختلفتين ، فيكون الحاصل في جهة الأكثر، ثم زدنا عــلى درجة الكوكب تسعين درجة ابداً و اخذنا ميل المجتمع و نقصناه من تسعين و ضربنا جيب الباقى في جيب الحاصل فيجتمع جيب ميل الكوكب عن معدل النهار و في جهة الحاصل و الغرض في هذا الكتاب هو ارشاد المتأمل الي ١٥ مطالب علم الهيئة دون تكثير الطرق في كل واحد منها فلذلك اقتصر على القليل و لا اشتغل بايراد الامثلة فانها عصى المقلدين في الزيجات تهديهم عند الحيرة في اعمالها . (١) فاما اذا اقترنت بها العلل بطلت معها المثل، فليكن لبرهان ⁽۱) ابتداء شكل: ۳۳. ما تقدّم: ابج د ؛ الدائرة المارة على الاقطاب الأربعة و: ا ه ج ، نصف معدل النهار على قطب: ط، و: ده ب، نصف فلك البروج على قطب: م، و ليكن الكوكب على : ك ، و نجيز عليه من قطبي : م ط ، دائرتي م ك ح ل ، ط ك ف س ، فيكون : ح ، درجة الكوكب و : ل ح ، ه عرضه او: ك س اميله أعنى بعده عن معدل النهار و هو المطلوب اوجميع ما نخرج من الدوائر فهي عظام ، فإن اخرجنا فيها صغرى اشرنا اليها ،ثم نخرج من نقطة الاعتدل دائرة: ه ك زا مارة على كوكب : ك و: ه ح ا بعد درجته عن الاعتدال و : ح د ٬ تمامه اعنى بعدها عن المنقلب، وجيب المعدل ا م أقطب فلك البروج (17) تمام كل قوس مساو ١٠ لجيب مجموعها و الربع ، فسواء اخذنا بعد الدرجة عن المنقلب او زدنا عـــلي بعدها عن ١٥ الاعتدال تسعين درجة ، فان جيب الحاصل من كلي الوجهــين يكون جيب : ح د ، و نسبته الى جيب : ح م ، الربع كنسبة جيب : زك ، ⁽١) ب، ج: ك-. الى جيب: ك م ، تمام عرض الكوكب، و: زك ، اذن معلوم و جيب: ك ه، تمامه هو المحفوظ، و نسبته الى جيب: ل ح ، عرض الكوكب كنسبة جيب: ه ز ، الربع الى جيب: ز د ، قوس التعديل و هي معلومة، و لأن مطلوبنا منها مُترفَّة قوس : ا ز ٬ و نظيرتها في الجهة الأخرى، و لتكنَّ هذه الجهة للثال الشمال، فميول النقط التي على: ه ز ، شمالية و عرض : ك ح، ٥ ايضا شمالي، و لهذا حصلت نقطة : ز ، فيما بين نقطتي : د م ، فاذا زدنا : د ز ٬ قوس التعديل على : ا د ٬ الميل الأعظم اجتمع : ا ز ٬ القوس المعدلة، و هكذا الحال في جهة الجنوب، فان كان عرض الكوكب في جانب الشال جنوبيا لم تخل نقطة: ك ، من ان يكون فما بين قوسى: ه ا ، ه د ٬ او على نفس قوس : ه ا ٬ او وراء ها الى الجنوب، فني الاختلاف ١٠ جهتي عرض الكوكب و ميل درجته تقع نقطة : ز ، اما على قوس : ا د ٬ الميل الأعظم الشالى فيكون القوس المعدلة فضل ما بينهما و هي نحو الشمال جهة الميل اذ هو اكثر من قوس التعديل، و أما على نظيرة قوس : اد ؛ التي لليــل الاعظم الجنوبي فيكون حصول القوس المعدلة -بالفضل أيضا في الجنوب خلاف جهة ميل درجة: ح ، بسبب زيادة ١٥ قوس التعديل على الميل الأعظم . و اما على نقطة : ١،
عند مساواتهما و يبطل البعد عند ذلك عن معدل النهار، فاذا حصلت قوس: ا ز ، المعدلة بشروطها كانت نسبة جيبها الى جيب: زه، الربع كنسبة جيب: سك، المطلوب الى جيب: كه، ⁽۱) ح: ك ح . المحفوظ، فبعد الكوكب اذن عن معدل النهار معلوم و هو فى جهسة القوس المعدلة . و اما الطريق الآخر! فان: ك ح ، عرض الكوكب و : ح ل ، عرض درجته هما من دائرة واحدة من دوائر العرض ، و الحاصل من و جميعهما أو أخذ فصل ما بينهما هو : ك ل ، و لندر على قطب : ل ، او ببعد ضلع المربع دائرة : ط ص ع ى ، فيكون : ى ع ، ميل ما زاد على درجة : ح ، بربع : ح ى ، و يساويه : ط ص ، لأن : ى ، قطب دائرة ، ص ك ل ، فكل و احدة من : ط ع ، ص ى ، ربع دائرة ، و : ص ع ، تمام هذا الميل ، و نسبة جيبه الى جيب : ص ل ، الربع كنسبة جيب . م س ك ، المطلوب الى جيب : ك ل ، الحاصل من العرضين . الباب الخامس في معرفة الدرجة التي تمرّ مع الكوكب ذي العرض على خطّ وسط الساء الكوك الدرنا مع وه افاة الكوك اذا اردنا معرفة الدرجة التي وافي وسط الساء مع هوافاة الكوكب اياه و تسعى درجة المر زدنا على بعد درجة الكوكب من اول الحمل معين درجة، وضربنا جيب المبلغ في جيب الميل الأعظم و قسمنا المجتمع على جيب تمام بعد الكوكب عن معدل النهار ، فيخرج جيب محفوظ نقوسه و نضربه في جيب تمام عرض الكوكب، و نقوس المجتمع و نلقيها من تسعين و نقسم على جيب ما يبق مضروب الجيب المحفوظ ⁽۱) ع : ح ك (۲) ع : ع . في جيب عرض الكوكب، فيخرج جيب قوس الاختلاف، فإن كان عرض الكوكب شماليا و درجته في النصف الهابط الذي من اول السرطان الى آخر القوس زدنا قوس الاختلاف على درجة الكوكب، وان كانت درجته في النصف الصاعد الذي من اول الجدي الى آخر الجوزا. نقصنا قوس الاختلاف من درجته ، و ان كان عرض الكوكب جنوبيا ه عملنا بعكس ذلك، فنقصنا عكس الاختلاف في النصف الهابط وزدناها فى النصف الصاعد، فينتهى فى جميع الأقسام الى درجة عمر الكوكب . (١) و لبرهانه فلنعد من الشكل المتقدم ما يحتاج اليه و نقول ان في مثلث: طكم، نسبة جيب زاوية : م، و مقدارها : دح، بعد درجة الكوكب من المنقلب و حصوله بزيادة الربع على بعدها من الاعتدال ١٠ الى جيب زاوية: ك ، و هو المحفوظ كنسبة جيب: ط ك، تمام بعد الكوكب الى جيب : ط م ، الميل الأعظم فزاويه : ك ، معلومة ، و لندر عملي : ف، وبيعد ضلع المربع قوس: م صع، ونخرج اليها: ف ط، على استدارتها فنقسمها على : ص ، بمقدارى زاوية : ف ، و تمامها ، و نسبة جيب: ك م ، تمام عرض الكوكب الى جيب: م ص ، تمام زاوية: ف ، ١٥ كنسبة جيب زاويـة : ص القـائمة الى جيب زاوية : ك ، المحفوظ ، في : ص ، معلوم ، و زاوية : ف ، لأجله معلومة، و نسبة جيبها الى جيب زاوية: ك، المحفوظ كنسبة جيب: ك ج، عرض الكوكب الى جيب: ح ف، قوس الاختلاف، و: ح، درجة الكوكب، و: ف، درجة ⁽۱) ابدا شکل : ۲۶ . مره الان لدائرة : طائف وقوة نصف النهار وقاه فهى تنظبق عليه اذا وقاه فه ومعلوم ان : ف و قدا ومعلوم ان : ف و قدا و الموضع يتقدم : ح و المي البروج و لوكانت نقطة : ك جنوية لتأخرت عن : ح و المي المرفى النصف تواليه المثم الامرفى النصف تواليه المثم الامرفى النصف ١٠ الآخر بالعكس اذا تبادل قطبا : طم ، السمة ، وصار احدهما في الصورة مكان الآخر، و يجب ان يعلم ان غاية الاختلاف بين درجة اللكوكب و بين درجة مرّه يكون اذا كانت درجة المرّ احدى نقطتى الكوكب و بين درجة مرّه يكون اذا كانت درجة المرّ احدى نقطتى الاعتدالين متى كان عرضه على مقدار واحد لا يتغير، ثم يتصاغر الاختلاف بالبعد عنها نحو المنقلبين فيبطل اذا صار احدهما درجة الكوكب . (۲) و ليفرد التقريره من الصورة ما يحتاج اليه، و لندر على قطب: م، و بيعد تمام عرض الكوكب مدار: ك ز ل، الموازى لمنطقة البروج، و نخرج من قطب معدل النهار الى نقطة الاعتدال قوس: ط ز ه، فيكون درجة الممر: ه، اذا صار الكوكب على: ز ، و نخرج من قطب: م، دائرة: م ز ى، ⁽۱) ب عج : وافاه . (۲) ابتدا مكل : ۲۵ (۳) ب ، ج : لغرز ⁽۵۰) فیکون فيكون : ى ، درجته و: ى ، ، قوس الاختلاف ، و هذا موضع تقاطعه الآن نسبة جيب : زى ، الى جيب : ط ب ، تمام الميل الأعظم كنسبة جيب : زه ، الى جيب : ط ه ، و لآن زاوية : ه ط م ، قائمة ، فان زاوية : ف ط م ، حادة ، و موقع عمود : م ع ، على : طف ، من : ط ، نحو : ف ، و هذا أصغر من : ط م ، و نسبة جيب : ك ح ، المساوى لـ : زى ، ه الى جيب تمام : م ع ، الأعظم من : ط ب ، كنسبة جيب : و د ، الى جيب : ك ع ، الربع ف : ك ف ، أصغر من : زه ، و نسبة جيب : و د ، الى جيب : ك ع ، الربع ف : ك ف ، أصغر من : زه ، و نسبة جيب : م ز ، الى جيب : زط ، كنسة جيب : م ى ، الى جيب : وكذلك نسة جيب : م ك ، المساوى : لم ز ، الى جيب : ك ع ، كنسة جيب : ك ع ، كنسة جيب : م ح ، الربع الى : جيب تمام : ف ح ، لكن : ط ز ، أصغر من : ك ع ، و تمام : ه ى ، أصغر من و تمام : ه ى ، أصغر من تمام: ه ح ' فهى أعظم من: ه ح ' ' و ايضا فان زاوية: و ط م 'منفرجة ' فعمود م ص َ الا قصر من : م ط ' يقع من : ط ' فى خلاف جهة : و ' و يستبين بمثل التدبير الاول ان : س و ' أصغر من : ه ى ' فقوس الاختلاف عند : ه ' على أعظم مقاديرها ' و أما عند نقطتى : د ب ' فيبطل لا نطباق القوسين الخارجتين ٢٠ من قطبى : م ط ' الى الكوكب على الدائرة المارة على الاقطاب الاربعة ، ⁽۱) من ج ، ر فی و : تعاظمه (۲) ج : ف ح ، ب : م ح . # الباب السادس فى معرفة درجة الكوكب وعرضه من قبل بعده عن معدّل النهار و درجة ممرّه اذا عرفا بالرصد اذا أعطينا بعد كوكب مفروض عن معدل النهار والدرجة التي وافت معه وسط السماء معلومين وأريدت درجته وعرضه أخذنا بعد درجة عمّر الكوكب من أقرب الانقلابين اليه بزيادة تسعين جزءا كا تقدم على بعدها من اول الحمل . و قسمنا جيب المبلغ على جيب تمام ميل درجة الممرّ فيخرج جيب تمام مطالعها ، و نضربه فى جيب تمام بعد الكوكب فيخرج جيب محفوظ . • نقوسه و نلقيها من تسعين ، و نقسم على جيب ما يبق هن مضروب جيب تمام بعد الكوكب فى جيب المطالع التى استخرجنا تمامها فيخرج جيب تمام القوس المعدلة . فان كان بعد الكوكب و ميل درجة الممر فى جهة واحدة كان فضل ما بين القوس المعدلة و بين الميل الأعظم هو قوس التعديل فى جهة بعد الكوكب ان كان الفضل له على ميل درجة الممر، و فى خلاف جهته ان كان الفضل لميل الممر، فان كانا فى جهتين مختلفتين كان مجموع القوس المعدلة و الميل الأعظم هو قوس التعديل فى جهة بعد الكوكب . ثم نضرب جيب قوس التعديل فى جيب تمام قوس المحفوظ فيجتمع جيب عرض الكوكب فى جهة قوس التعديل، و نقسم المحفوظ على جيب عرض الكوكب فى جهة قوس التعديل، و نقسم المحفوظ على جيب ⁽١) ج: الكواكب . تمام عرض السكوكب فيخرج جيب اقرب بعد درجة الكوكب عن اقرب المنقلبن اليه . فان كانت درجــة الممر فيما بين الاعتدال الربيعي و المنقلب الصيني نقصنا هــذا البعد من تسعين ' و ان كانت ' في الربع الذي يتلوه زدنا البعد على تسعين ' و ان كانت فيما بين الاعتدال الحريني و بين المنقلب الشتوى نقصنا البعد من ما ثتى و سبعين ' و ان كانت في الربع الذي يتلوه زدنا على ما ثتى و سبعين ' فيحصل بعد درجة الكوكب من اول الحل . (۲) و نعید له من الصور المتقدمة فی عکسه ما یحتاج الیه لیسقط تکریر الموامرة و الکوک منها علی: ك ، و درجة بمره: ف ، و نقول ان نسبة جیب: ط ف ، تمام میل درجة الممر الی جیب: م د ، بعدها عن الانقلاب کنسبة جیب : ط س ، الربع الی جیب : س ا ، تمام : ه س ، مطالع ، فهی معلومة ، . و نسبة جيب: س ا ، الى جيب: ط س ، كنسبة جيب : ك ز ، المحفوظ الى جيب : ط ك ، تمام بعد الكوكب عن معدل النهار، و نسبة حيب : ك ه ، تمام قوس المحفوظ الى جيب : ه س ، المطالع كنسبة حيب : ط ك ، الى جيب : ط ز ، تمام القوس المعدلة ، و : ز د ، هى قوس التعديل ، و نسبة جيب : خ ، تمام قوس المعدلة ، و : ز د ، هى قوس التعديل ، و نسبة جيب : خ ، تمام قوس المحفوظ ، فالعرض معلوم . ألكوك الى جيب : ك ه ، تمام قوس المحفوظ ، فالعرض معلوم . ⁽١) ج : كان (٢) ابدا. شكل : ٣٦ . و نسبة جيب: م ك ، تمامه الى جيب: زك ، المحفوظ كنسبة جيب: م ح ، الربع الى جيب : ح د ، اقرب بعد درجة الكوكب عن أقرب المنقلبين اليها . و لا يخلو من أن يكون الى توالى البروج فيحتاج الى زيادة تعديل ه ذلك المنقلب عن الاعتدال الربيعى و هو للصينى منهما ربع و للشتوى ثلاثة ارباع او تكون الى خلاف التوالى فيحتاج الى نقصان بعد الدرجة من بعد المنقلب ليحصل بعد الدرجة من اول الحمل . و انما اشتغلنا بتعرف جهة قوس التعديل الآجل جهة عرض الكوكب، فاما فى الوضع الذى الكوكب فيه على : ك ، فان القوس المعدلة : ا ز ، وفضل ما بينهما و بين الميل الأعظم هو : د ز ، قوس التعديل فى الجهة التى فيها : ك ح ، عرض الكوكب و هى جهة : ك س ، بعد الكوكب الذى فيها : ف س ، ميل د رجة الممر . و نضع الكوكب على نقطة ج ، و نخر ج اليه قوس : م ل ج ، فيكون : ل ، درجته و : ج س ، بعده عن معدل النهار و : ف س ، ميل درجة الممر فى جهته و : ل ه ، الفضل . فاذا اخرجنا: هج ص ، نظيره قوس : ه ك ز ، كانت المعدلة: اص ، و فضل ما بينهما و بين الميل الأعظم : د ص ، قوس التعديل فى خلاف جهة : ف س ، اعنى التى اليها عرض : ج ل ، ثم ليكن الكوكب على : ى ، و نخرج اليه قوسا من : ى ، فيكون : ف ، ⁽۱) ب، ج:فس (۲) ج:مس (۲) ج:مس. الاعتدال النهار درجته و:سى، بعده عن معدل النهار فى خلاف جهة: مس، ميل درجة المر فاذا اخرجنا: هىع، نظيره: ه ك ز، كانت القسوس المعدلة: اع، و مجموعها الى : أ ه ، الميل الأعظــم هو قوس التعديل فى جهة بعد : ١٠ سريى ، التى اليها : ى ف ، عرض الكوكب ، و ذلك ما اردناه . ⁽۱) ب: ف س ، ج: مس (۲) ب: عل ، ج: عن . # الباب السابع في معرفة عروض البلدان بارتفاعات الاشخاص الطالعة الغاربة على فلك نصف النهار اذا اردنا ذلك رصدنا ارتفاع الشمس او الكوكب و هو في ه تزایده حتی بیلغ غایته التی لایزداد بعدها، بل یتناقص ، فنعرف مقداره و جهته أمن ناحية الجنوب ام من ناحية الشمال؛ ثم يستخرج ميل الشمس لوقتئذ ان كان الارتفاع لها أو بعد الكوكب عن معدل النهار ان كان القياس به و نعرف جهته؛ فان اتفق الميل و الارتفاع الموجود في جهة واحدة أخذنا فضل ما بنن تمام الارتفاع و بنن ذلك الميـــل أو البعد، ١٠ و ان كانا في جهتين مختلفتين جمعنا تمام الارتفاع والميل أو البعد، فيحصل من المجموع أو التفاضل عرض البلد، و ان اتفق ان لاينسب الارتفاع الى جهة مّا ، و ذلك اذا كان تسعين جزؤا سواء كان ميل الشمس أو بعد الكوكب بعينه هو عرض البلد . فنقول في علة ذلك: انكل من سكن خط الاستوا، فإن اشخاص ١٥ الساء المرئية كلهـا تطلع عليه و تغيب عنه ، و يكون أعظم ارتفاعها في فلك نصف النهار مساويا لتمام ميولها أو ابعادها عن معدل النهار في جهتها، و ذلك لا نتصاب المدارات فيه على الأفق ، فن و جـد في مسكنـه تمام ارتفاع نصف نهار الشمس أو الكوكب مساويا لميلها أو بعده و في جهته ، فليعلم ان سكناه على خط الاستواء ، ومتى تنحى عن هذا الخط ٢٠ نحو الشال ، فان الربع المسكون في جانبه ، و يسمى تنحيه عرضا، و اما (10) معدل معدل النهار عن سمت رأسه الى الجنوب ميلا مشابها لهذا العرض، وكل ما كان من المدارات جنوبي الميل أو البعد فانه امعن في الجنوب عن سمت الرأس من نفس معدل النهار ، و ذلك يمتنع فيه ان يكون أعظم الارتفاع من جهة الجنوب و يكون هو ارتفاع معدل النهار منقوصاً منه ميل المدار فتمام هذا الارتفاع هو تمام ارتفاع معدل النهار ٥ مزيدا عليه ميل المدار ، لكنهما ، متفقان في جهة و هي الجنوب ، ففضل ما بينهما هو تمام ارتفاع معدل النهار، و هذا التمام هو عرض البلد لسبب المشابهة بين الابعاد الساوية و بين الابعاد النظيرة آياها في الارض . و أما المدار الشمالي الميل فيحتمل أحدى ثلاثة أحوال؛ أغني بها المرور عسلي سمت الرأس و الميل عنه نحو الشمال او الجنوب، فاذا مال ١٠ عنه الى الشال كان أعظم الارتفاع الموجود فيه من ناحية الشال أو الجنوب، فيساوى الميل أو البعد، وهما شاليان بالضرورة بحموع عرض البلد وتمام الارتفاع ، و لكون الارتفاع و الميل شاليين معا يكون فضل ما بين تمام
الارتفاع و الميل هو عرض البلد، و ان مال هذا المدار الشالى الميل عن سمت الرأس نحو الجنوب صار تمام أعظم الارتفاع الجنوبي هو عرض ١٥ البلد منقوصًا منه ميل المدار؛ فاذا جمعناهما بسبب اختلاف الجهتين كنا قد أخذنا الميل اليه فاجتمع عرض البلد، و ان كان الارتفاع ربعا وقف بين الشمال و الجنوب و لم ينسب الى احدهما، فمرَّ المدار على سمت الرأس وكان بعده عن معدل النهار هو بعد سمت الرأس عنه وذلك عرض البلد . ⁽١) ج: العرض (٢) ب ، ج: أعدنا . ## البــاب الثامن فى معرفــة عروض البلدان بارتفاعات الأشخاض الأبدية الظهور فيها على فلك نصف النهار اذا أردنا ذلك قصدنا أحد مشاهير الكواكب التى تدور حول القطب فى بلدنا ظاهرة لا تطلع من الأفق و لا تغرب فيه ، و ذلك مثل الفرقدين ، و مقدم السرير ، من بنات نعش فى ارض العرب و ما حاذاها، و زيادة مؤخر السرير و اكثر البنات ببلاد خراسان و ما و الاها ، و كل البنات عما ورا ه النهر بلخ من البقاع . فاذا عبنا كوكما واحدا منها أو من امثالها رصدنا أعظم ارتفاعه فى فلك انصف النهار عند اعتلائه على القطب و رصدنا ايضا أصغر ارتفاعه فيه عند انحطاطه عن القطب و روره تحته ، فان كانا معا من جهة واحدة و هو الشمال لا محالة أوكان احد هما تسعين جزؤا سواه أخذنا نصف مجموعها فيكون عرض البلد و ان كان الارتفاعان مختلني الجهة نقصنا نصف مقدمات هذه الصناعة غيبة مقدار الارض عن الحس بالقياس قد استبان من مقدمات هذه الصناعة غيبة مقدار الارض عن الحس بالقياس الى اكر الشمس و الكواكب ؛ فان ما اشترك على فلك نصف النهار من الربع الذي عن معدل النهار الى قطبه و الربع الذي من الأفق الى قطبه و هو الذي بين القطب و بين سمت الرأس اذا أسقط تساوت البقيتان و احداها عرض البلد و الاخرى و هى ارتفاع القطب تساوى ⁽١)ب ، ج: تغيب (٢) ج: معه عرض البلد فى الحس لكن ذات القطب نقطة غير مبصرة اذ ليس مكن ان يحله كوكب الا آناً من الزمان مم لا يلبث فيه شيئا من المدة فليس الى اخذ ارتفاعها سبيل الآ من جهة ما يحس حولها . و ما من مسكن ذى عرض الآ و الكوكب الذى يحويهما المدار الماس لا فقه ابدية الظهور، لا يسترها عن الاعين الاضوء النهار، وكل ه كوكب كذلك، فانه يوافى فلك نصف النهار فوق الارض فى الدورة مرّتين، متعاليا على القطب مرة، و متسا فلا عنه اخرى، فان اطلق ذكر الارتفاع الأعظم سمى الأخير انحطاطا، و ان قيد بالأعظم سمى هذا ارتفاعا أصغر، و المعنى على حاله و ان كان الأخير اصوب لا تجاه الانحطاط على خلاف الارتفاع تحت الأفق. (۱) و نحن نصوره ليقرب تفهمه فليكن: ابج د، فلك نصف النهار و: اه ج، فيه قطر معدل النهار، وقطبه: ط، و: به د، قطر الأفق وقطبه: س، و نفرض اقطار دوائر ابدية الظهور موازية لقطر: اه ج، مبتدية من: س، سمت الرأس، و من: ح، الجنوبي عنه و: ك، الشمالي وهي: حز، س ل، كم، ومطلوبنا: دط، ارتفاع القطب لمساواته عرض البلد، فاما قطر: كم، وهو الذي يعطى الارتفاعين في جهة واحدة هي الشمال، وهي : دك، الأعظم و: دم، الاصغر وقد توالت معنا ثلاثة اعداد متناسبة نسبة عددية وهي : دم، دط، دك، بفضول متساوية، وضعف او سطها مساو لمجموع الحاشيتين، فاذا جمعنا: دم، متساوية، وضعف او سطها مساو لمجموع الحاشيتين، فاذا جمعنا: دم، ⁽١) ابتدا. شكل: ٣٧ . الاصغر الى : دك ، الاكبر اجتمع صعف عرض البلدكما أنا اذا نصفنا فضل ما بينهما و هو : م ك ' ، و زدنا ذلك النصف على د ز ، الأصغر أو نقصناه من : دك ، الأعظم حصل : دط ، المطلوب . و أما قطر: س ل ، فأنه يعطى : د ل ، أصغر الارتفاعين في الشال ه و: دس، اعظمهما ربعا تــاما غير منسوب الى جهة و: د ل، د ط، د س، متفاصل بالسواء، فالنسبة بينها عددية و الموآمرة الاولى فيها مطردة، و اما قطر : د ح ، فانه يعطى ارتفاعى : د ز ، ج ح ، فى جهتين مختلفتين و نخرج فیه: دع، موازیا له: حد، فیقطع : ع ح، مساویا له: د ز، و: اع، مساويا له: اب، فاذا نقصنا :ع ح، اصغر الارتفاعين من: ١٠ ب- ، اعظمها بق: م ع ، ضعف : ب ا ، ارتفاع معدل النهار و ذلك تمام العرض، و الجنوبي من هذين الارتفاعين بالضرورة أعظم فان تساويهما لايكون الاعند نهاية العرض الذي تسامت فيه القطب الرأس، و ايضا فان : ز س ، تمام اصغر الارتفاعين و : ح س ، تمام اعظمهما٬ فاذا جمعا كان : زطح، فاذا زيد نصفه على: د ز ، الاصغر ١٥ اجتمع: د ط، العرض. و ظِاهِرِ أَنَّ الْكُوكِ الْابْدَى الظَّهُورِ أَذَا كَانَ مُعْلُومُ الْبُعْدُ عَنْ معدل النهار فأنه يستغنى عن اخذ ارتفاعيه، فأن كأن المعلوم أعظمها نقص تمام بعد الكوكب عن معدل النهار، و أن كان أصغرهما زيد عليه فيحصل عرض البلد . ⁽۱) ج:بك(٢) ب، ج:ب م. 10 وهاهنا قسم انما نذكره في جملة الأقسام لأر. مأخذه خني عن س سمت الراس dul / (1/ (1/) / (1/) قطر الانق النعار النعا (mv) الحسوهو الذي يبطل فيه أصغر الارتفاعين بماسة مدار الكوكب الافق من اجل ان الكوكب يغيب عن البصر قبل انتهائه الى الافق لمغالبــة البخارات الغليظة نوره وغلبتهاا ياه وفاما كوك : ك العرض نصف ارتفاعه النافق كان قطر مداره : ك د او العرض نصف ارتفاعه وكذلك كوكب: س، و بسبب أن الارتفاع يكون ربعا تاما فان العرض يكون حينئذ ثمن الدور، و اما كوكب : -، فيكون ارتفاعه : ب ے، و قطر مدارہ، : ح ز ، و لموازاته قطر : ا ہ ج ، یکون : ب ح ، ضعف: اب، تمام العرض، وذلك ما اردنا ايضاحه. فقد اتضح ان تمام عرض البلد و اسطة عددية فيها بين ارتفاعي تصف نهار مدارين متساويبي الميل الى جهتين مختلفتين اذا كان الارتفاعان من جهــة و احدة ٬ و مثاله لبلد غزنة ٬ انا و جدنا أعظم ارتفاع به للشمس في فلك نصف النهار: ف ه ، و أصغره فيه: لب ن ، فاذا نقصنا ⁽۱) پ، ج:ف، الباب الميل الأعظم من اعظمهما أو زدناه على أصغرهما حصلت تلك الواسطة: يو ، كه ، و هو تمام عرض البلد ، و تأكد الركون الى ذلك من جهة انا و جدنا في و قت الاعتدال بين الرصد و بين حساب: زيج حبش قريبا من اربع ساعات و نصف و ربع ساعة تسير الشمس فيها (٠٠يا ، مب) ، و بها تنقص الحقیقة عن الحساب٬ فاذا اعتبرنا بها ما و جدناه من ارتفاعات انصاف النهار باستخراج تمام عرض البلد من كل واحد منهما أو من تنصيف مجموع كل ارتفاعين لمدارين متساويين متباينين قارب و جودنا المذكور٬ و مثال الأول برجى الاسد و القوس آنا و جدنا مقوم الشمس فى دفتر السنة لنصف نهار يوم السبت التاسع من أمرداذ ماه سنة ثمان ١٠ و ثمانين و ثلاث مائة لنزدجرد بغزنة في الاسد: . ، ط، يكون النقصان المذكور في السرطان: كط، يج، لح، و مسيرها ليوم سبع و خمسون دقيقة. و وجدت بالرصد ارتفاع نصف النهار في هذا اليوم معتبرا بالشعرة و بالشاقول: عو ، مب ، و في غده: عو ، ل ، فيكون ارتفاع اول الاسد: عو ' ما ' لب ' و كان مقومها لنصف نهار يوم الاثنين الخامس ١٥ من آذر ماه في السنة المؤرخة في دفتر السنة لغزنة في العقرب :كط ، مه، وبالنقصان : كط ، يج ، لح ، و مسيرها درجة دقيقـــة و ارتفاع نصف النهار بالوجود : لو ٬ يو ٬ و في غده ارجح من : لو ، ب ، فيكون ارتفاع اول القوس: لو ، ط ، نب ، و مجموع ارتفاعي اول القوس والاسد: قيب، نا، كد، ونصفه: نو، كذ، مب، وعسلي مثله ٢٠ كان لما اعتبرناه بكل مدارين متساويين متباينين و متحدين فانها كلهـا تقاربت و اطمان القلب الى الوجود الكلى المجرد من الحساب . # الباب التاسع في معرفة عروض البلدان من ارتفاعات الاشخاص في افلاك نصف نهارها وفلك نصف نصف نهار سلد آخر معلوم العرض اذا اعطینا لکوک و احد بعینه ارتفاعان فی فلك نصف النهار احدهما فی بلد معلوم العرض و الآخر فی بلد مجهوله ثم لم تكن بین ه و قتبهما مدة یكون فیها الكوک من حرکته ما یغیر بعده عن معدل النهار و بالجهة و المقدار و طلب عرض ذلك البلد المجهول فانا ننظر الی جهتی الارتفاعین فان كانتا مختلفتین اعنی كان احدهما من ناحیة الجنوب و الآخر من ناحیة الشمال جمعناهما و نقصنا المبلغ من مایة و نمانین قیبق فضل ما بین العرضین. فان كان الارتفاع فى معلوم العرض منها جنوبياً نقصنا الفضل من عرضه و ان كان فيه شماليا زدنا الفضل على عرضه فيحصل عرض المجهول و ان لم يختلف جهتا الارتفاعين بكونها فى ناحية و احدة اوكون احدهما تسعين جزوا سواه غير منسوب الى جنوب أوشمال فانا ننظر الى الارتفاع فى البلد المعلوم العرض فان كان جنوبيا و اقل همقدارا أو كان شماليا و اكثر مقدارا نقصنا الفضل بين الارتفاعين من عرضه ، و ان كان على عكسه اعنى جنوبيا فى البلد المعلوم و اكثر مقدارا أو شماليا فيه و اقل مقدارا أو شماليا فيه و اقل مقدارا، زدنا فضل ما بين الارتفاعين على مقدارا أو شماليا فيه و اقل مقدارا، زدنا فضل ما بين الارتفاعين على ⁽١) من : ٩ ، ب وفي و : المعلوم . عرضه فيحصل عرض البلد الآخر فان كانت المدة بين و جودي ارتفاعه مديدة يقتضي الاختلاف في ارتفاع نصف نهار الكوكب بسبب حركته لم يكن بد من تصحيح موضعه لوقت أخذ ارتفاعه فى البلد المجهول العرض واستخراج ارتفاع نصف نهاره في البلد المعلوم العرض ثم ه اقامته المرصود فيه و استعاله حينئذ مع الآخركما تقدم . (١) و ليحقق ذلك فليكن في فلك نصف النهار : ج ه ز ' وقطر الافق الذي قطبه : ١ ، و ، د ه ح ، قطر الا فق الذي قطبه : ب ، الاجنب عن : ١٠ وليكن: بم، عرض بلد: ب، فيكون: ام، عرض بلد: ١٠ و ا بُّ ، فضل ما بين العرضين و نفرض الكوكب او لاعلى: ك ، لكون . ارتفاعه في كلا البلدين جنوبيا و فضل ما بنن ارتفاعيه : ح ز ه ، مساو لـ: ا ب، فاذاكان بلد : ا ، معلوم العرض و الارتفاع فيه : ك ج ، ا قل من : ك د ، و ننقص : أب ، من : أم عرضه بتى : ب م ، عرض : ب و ان كان المعلوم العرض : ب كان ارتفاع : ك د ، فيه اكثر . فاذا زِيد ا ب على: بم اجتمع: ام عرض: ١ فان سامت ١٥ الكوكب بلد: ب عتى صار الارتفاع فيه غير منسوب الى جهة كان : اب ، فضل ما بين الارتفاعين مزيدا على عرض بلد: ب ، ان كان هو المعلوم و منقوصاً من عرض بلد : ١ ، ان كان هو و لنفرض الكوكب بعد هذا على: س ، ليكون ارتفاعه فى كلا البلدين من ناحية الشمال و الفضل بین ارتفاعیه : ز ح ، المساوی لـ : ا ب ، فاذا کان بلد : ۱ ، معلوم العرض ⁽١) ابتداء شكل ٢٨ (٢) ج : إن ج (٦) ب ، ج : إد . و الارتفاع فيه: س ز ، اكثر من : س ح ، الارتفاع في بلد : ب ، ونقص: اب، من: ام، بقي: ب، • فان كان معلوم العرض بلد:ب، و الارتفاع فيه ا قل ثم زيد الفضل على : ب م ، اجتمع : ا م ، فان سامت الكوكب بلداكان الارتفاع في بلد: ب، شماليا، و الفضل بين الارتفاعين: اب، اعني: زح، فاذا نقص ٥ من عرض: ١ ، أو زيد على عرض: ب ، ايهما كان المعلوم حصل عرض الآخر ثم نفرض الكوكب على : ط ، لتختلف الجهة فيكون ارتفاعه في بلد : اطح، من ناحية الجنوب وفي بلد : ب طح، من ناحية الشمال و: اب، فضل ما بين العرضين مركب من تماميهما و هما : اط ، ب ط ، فاذا امتثل فيه ما تقدم حصل المطلوب و سواء ١٠ جمعنا تمامى قوسين أو القينا بمحموع القوسين انفسهما من تصف الدور . ### الباب العاشر في معرفة الارتفاع في فلك نصف النهار اذا كان ميل الشمس معلوما في نصف نهار يوم مفروض و بلد معلوم العرض٬ و اردنا معرفة اعظم ارتفاعها فيه يومئذ نظرنا الى جهة ه ميلها فان كان جنوبيا جمعنا الميل الى عرض البلد فيكون تمام ارتفاعها نصف النهار من جهة الجنوب. و ان كان شماليا اخذنا فضل ما بينهما فيكون تمام ارتفاع نصف نهارها من جهة الجنوب ان كان الفصل لعرض البلد و من جهة الشهال أن كان الفضل لليل٬ و أذا نقصنا تمام الارتفاع من تسعين سواء 1. يقى الارتفاع نفسه، و متى ساوى الميل عرض البلد كان الارتفاع تسعين سواء ولم ينسب الى جهة . فان اريد اعظم انحطاطها تحت الارض نصف الليل فلانه مساو لارتفاع نصف نهار نظيرة درجتها اعنى الدرجة المقاطرة لها لكنه في خلاف جهته؛ و آنا نغير جهة ميل الشمس دون مقداره اعني آن كان ١٥ جنوبيًا سميناه شماليًا و بالعكس، ثم نستخرح به ارتفاع نصف النهار كما قدمنا وجهته فما حصل نبدل جهته دون مقداره فيكون انحطط درجة الشمس تحت الارض . و هكذا الحال في الكواكب اذا عمل بابعادها عن معدل النهار ما عمل عميل الشمس شم ينفصل عنها بمقايسة تمامات تلك الابعاد الى ٢٠ عرض البلد فالي كوكب سوى تمام بعده عن معدل النهار عرض البلد ماس
ماس مداره الأفق فـــلم يطلع منه ولم يغرب فيه و متى فضل عرض البلد على تمام بعده تم كان البعد جنوبيا كان الكوكب فى ذلك البلد البدى الحفاء، و ان كان شماليا كان من الابدية الظهور وحصل أعظم ارتفاعيه بما ذكرناه . فاما اصغرهما فيكون فضل ما بين تمام بعده و من عرض البلد ه و من احاط بما تقدم لم يخف عليه علل ذلك فلهذا أعرضنا عنها ويتعذر و ضع الاعمال الجزءية لجميع العروض الاان يفرد و احد منها للثال و قد جعلناه عرض بلد غزنة لمقار بة عروض بلدان مشهورة اياه كأصفهان بالجبل و بغداد بالعراق و دمشق بالشام . و وضعنا في هذا الجدول ارتفاع نصف النهار بها مع ساعات ١٠ الايام المستوية و ازمان ساعاتها المعوّجة فلينقص من بعد الدرجة من اول الحمل ابدا تسعون و يدخل الباقى في سطر العدد فنؤحذ بازائه المطالب الثلاثة المذكورة ٠ ### لعرض غزنة | لنهار | سف ا | فاع نه | ار ت | ت | الساعاد | مان |
از | به | المستو | باعات | الــ | ساعد | ، الهابط | |------------|--------|---------|-------|-------|---------|-------|-------------|--------|-------------|-------|-------|-------------|-----------| | أو الث | ري . | د ها ده | اجزاء | ثوالث | ثواني | دقاتق | ازمان | ثو الت | پیوران
ا | دقائق | ساعات | النصف الصاد | النصف | | <i>y</i> . | مو | نط | عط | 7 | کح | بح | يز | ي | مز | يد | ید | شنط | .) | | | 1 | | عط | 1 | - | | | ll | مب | | | ∥ ~ | ļ | | + | ا نو ا | نز | عط | نز | بج | مح | ا يز | | The same of | | mm : | شنز | | | 1 1 | | | عط | | | | ا يز | | | l | | شنو | | | يط | ير ا | ند | عط | بج | بج | مز | ير: | ځ | ی | ید | يد | شنه | ٥ | | نز ا | مو | ن | عط | نج | 2 | مز | یر | مب | نو | يج | يد | شند | و | | | مط | | عط | | | | ين | نو | لد | بج | ید | شنج | ا ز - ا | | 7 | ا کد | مه | عط | ع | كط | مو | بر. | نا | يا | بج | يد | شنب | ح | | لو | لب | ما | عط | مط | نح | مو | يز_ | ج | مز | يب | يد . | شنا | ط | | نز | 3 | لز | عط | كط | کج | مهٔ | يز | مز | بح | يب | ید | شن | ی | | لج | کے | لب | عط | کم | مد | مه | يز | لب | مز | يا | يد | شمط | ١ | | یخ | يو | كز | عط | يط | • | مد | ٠,٠ | نه | يب | یا | ید | شمح | بب | | ما | از | 5 | عط | م | يه | مد | يز | لب | لورا | ي | ید | شمز | يج
ايج | | يه | + | له | عط | + | كط | بج | یز | 7 | نط | ط | يد | اشمو | راد | | کط | 1 | ط | عط | له | ل | مب | بر ا | کح | نب | ط | يد | طيم | 4. | | 3 | ٦ | ب | عط | ح | لو | ما | <i>j</i> ., | طي | کح | ٦ | بد | شمد | یو | | کد | ا ما | ند | عح | نو | و | ۴ | ا يز ا | لج | ما | ز | يد | نتمج | ین | ⁽۱) ب: کج (۲) ب: ع (۲) ب، ج: اله ٠ | <u> </u> | 1 6 | 1 | | Ti. | | | | | · ' | _ | | | | |----------|-----------|------|-----|-----|-------------|-----|------------|----|-----|------|----|----------|------| | 1 | <u>نج</u> | مو ا | | ن | لج | لطا | يز | د | t | 9 | يد | | يح ا | | نو | لح | لح | عح | K | كز | _ | يز | 1 | ع ا | • | يد | شما | يط | | ١٠٪ | نط | کط | عح | نز | يز | لز | ین | 5 | ب | 0 | ىل | شم | ٤ | | یج | نه | ্র | عح | ز | ٥ | لو | <u> </u> | ٥ | د | د | ید | شلط | 5 | | د | كز | ما | عح | كز | ځ | ما | ٠
٠ | مو | ب | 7 | يد | شلح | کب | | ح | لد | | عح | لد | J | لج | <i>y</i> _ | کح | | ب | يد | شلز | کج | | لز | يو | ្រ | عز | مو | 7 | لب | <u>بر</u> | ١ | نه | • | يد | ! | 25 | | 3 | له | م | عزا | نز | بج | Y | يز | ی | من | نط | يج | شله | 5 | | کو | J | كط | عز | 2 | نو۲ | كط | يز | ط | لز | نح | 3 | شلد | | | Ļ | ب | ع | عز | 0 | | کح | <u>بر</u> | نب | کد | نز | + | شلج | كز | | ع | ی | 9 | عز | يو | لج | 25 | | لز | ی | نو | + | شلب | کح | | ځ_ | نو | نج | عوا | طي | لز | کم | ינ | ع | بح | ند | 3 | شلا | كط | | ¥ | 1 | i i | عو | لط | ب | کج | يز | ۲ | لج | نج | بج | شل | ً ل | | کب | 5 | کح | عو | لو | ٠, | 4 | یز | د | يك | نب | بج | شكط | Ŋ | | <u>រ</u> | • | يه | عو | ج | نه | ع | يز | ب | نب | ن | بج | ا ئىكىح | لب | | من | ع | 1 | عو | Ì | مط | يو | <u>ئ</u> ر | بج | كز | مط | ج | شكز | خ | | لج | به | من | बट | و | 1 | ط | بر | ج | • | ع | بج | شكو | لد | | 25 | نا - | لب | ac | الح | ی | بج | يو | Z | الب | من | ج | شكم | له | | ن | و | يح | dC | ی | بح | ا | <i>ي</i> ر | لب | ل | 4. | ج | أشكد | الو | | د | ب | ح | ٩C | كز | كج | ط | ير | مو | J | ع' | بج | شكج | لز | | كط | یز | من | بد | ع | 2 | ٔ ز | يز | J | یز | ا ما | بج | أشكب | ځ | لط [·] يو : بر (۲) ب يو · | | | | | | | | | 1 | | | | | | |----|----|----|----------|----|----------|----|----------|--------------|-----|----------|-----|-------------|-----| | K | | يه | عد | کج | 8 | ح | ير: | نه | مه | ۲ ا | یج' | شكا | لط | | لح | کح | نط | عد | یح | ك | 1 | يز | نط | ز | لز | يج | شك | م | | ح | مو | مب | عج | لج | <u>.</u> | نط | یز | کو | کح | له | 3 | شيط | ما | | لو | مط | 2 | عج | \$ | ید | نز | يو | لب | j | <u>+</u> | 3 | شيح | مب | | لب | 4 | ح | عج | لج | • • | نه | پو | طي | ٥ | <u></u> | 13 | شيز | بع | | يط | • | li | عج | نط | نو | نب | يو | له | کب | | 3 | شيو | | | ز | ی | لج | عب | بل | | ن | يو | دو | لو | كح | عج | شيه | | | 5 | T | 4, | عب | 25 | لخ | ع | يو | 4.0 | ن | | | شيد | مو | | 1 | م | نو | عب | | بط | مو | يو | لب | ح | 5 | | شيج | مز | | او | 1 | ٤ | عا | | دا | مد | . | یج | بِه | کج | 3 | شيب | ع | | צ | ز | ط | عا | ی | i - | ما | يو | مد | 8 | 5 | 3 | شيا | مط | | ح | بح | • | عا ا | نه | کح | لط | يو | ح | 4 | يط | 3 | شی | ٔ | | کج | لد | م | عا | 25 | ط ا | لز | يو | خ | بج | يز | بج | شط | زا | | 8 | نو | 4 | ع | و | مط | لد | يو | يو | ţ | يه | بج | شح | نب | | K | د | 1 | ع | کد | كز | لب | يو | نه | نز | يج | 4 | شز | نج | | بع | نح | ۴ | ع | كظ | د | ل | يو | له | ج | يب | بج | ا شو | أند | | بج | نح | ۴ | اسط | كط |) | J | يو | 4 | 3 | یب ا | یج | شه | 41 | | ب | ٢ | ٤ | سط | لو | ٢ | كز | . يو | نط | ۲ | لح | بج | شد | ie | | مب | ۲ | • | سط | لد | ب | 5 | يو | کز ا | يب | ح | بج | شج | نز | | مط | كد | لط | سح | ن | أنط | کب | يو | نط | 4 | 9 | بج | ئب | بح | | ع | كط | ع | <i>ح</i> | نز | ک | 실 | يو | کب | ج | د | 3 | شا | نط | (١) ب: ج، م، كب، كل، ير، ، ، كج، ز، عد، لا، ج، كو (٣) ب: كو (٣) ب: له. | | | | | | | | | | | | | | _ | |-----|--------------|-----|--------|----------|-----|-----|---------------|------|------|--------|----------|----------------------|-------| | مب | 5 | كز | سز | يو | 4 | یز | يو | بج | ٤. | ب | 3 | ش | س | | ا و | 7 | لو | سز | مج | کو | طي | يو | کب | 5 | • | بج | رصط | سا | | اط | لج | يد | سز
 | طي | نز | یب | <u>بو</u>
 | مح | 5 | خ | بب | ر صح | سب | | مب | نج | یب | سو | اك ا | كز | ,ی | يو | نب | 5 | نو | ب | رصز | سج | | مه | ج | Ŋ | سو | R | يو | j | يو | د | 8 | ند | | رصو | ! | | نح | ح ا | ط | سو | مط | کد' | 0 | يو | لط | 실 | نب | ب | رصه | سه | | ب | نه | مو | سه | 괴 | نب | ب | يو | ح | بح | ن | یب | رصد | سو | | یب | لز | كد | سا | مج | يد | | يو | مو | اي | مح | يب | ر صبح | سز | | الج | ی | ب | طس | کد | aو | نز | طي | ز | بج | مو | یب | رصب | سح | | مح | له | لط | مد | کد | يب | نه | رَّة | નાં | ط | مد | ب | رصا | سط | | نط | ج | يو | سالم | مو | لز | نب | ي . | ج | و | مب | يب | رص | ع | | 8 | ح | ند | سج | ند | ب | ن | 4) | يط | ب | ٢ | يب | رفط | عا | | 25 | و | Ŋ | سج ا | كد | Z | مز | يه | نه | نز | لز | ښ | رفح | عب | | مب | ب | ح | سج | لب | li | مد | 4 | بج | بج | له | يب | رفز | عج | | مه | نب | مد | سب | يو ي | ځي | مب | يه | يٺ ا | سح ا | + | <u>ن</u> | رفو | عد | | نب | از | 8 | سب | <u> </u> | لح | لط | به | ۲ | مب | Y | يب | رفه | 45 | | ٦5. | طي_ | نح | س | بح | "] | لز | 4ي | ج | از | كط | يب | ر فد | عو | | مو | مح | لد | | ب | كد | لز٢ | بِه | يد | Y | كز | یب | رفج | عز | | ج | ٠,٠ | يا | T., | X | مو | Y | 4) | یج | کم | کم | یب | رفب | حج | | كز | ما | مز | س | لد | ح | كط | ر4 | نا | لح | کج | <u></u> | ر ف ا
د سد | عط | | کح | 1 | كد | ا س | كط | J | کو | 4) | کج | يب | 8 | يب | رف | اف | | 6 | ·: | (05 |) | | | | | | 1 | . ച∷ ૯ | (۲) ب | ٠ : كل | (۱) م | | ļ.··. | | J | | | | | | | | | | | | |--------------|-------|--------|----------|----------|--------|---------|----|----|-----------|-------------------|---------------|--------------|-----| | نب | 3 | • | س | نو | نا | كج | 4 | + | | يط | بب | رعط | 6 | | ند | J | لو ا | نط | ٤ | ٤ | 15 | | 7 | <u>۽</u> | يو | بب | رعح | فب | | ند | • | نب | نط | لز | لد | 3 | 4 | لط | نا | يد | يب | رعز | فج | | צ | معلخ | ځ | ع | لط | ِ
م | خي | يه | 8 | مد | يب | بب | رعو | فد | | من | ج (| كد | نخ | ب | يو | بج | يه | یج | لز` | ی | يب | رعه | طغ | | ره | ريز | | خ | 25 | لز | ی | يه | نز | كط | ح | يب | رعد | فو | | ٤ | نط | لو | <i>y</i> | ط | څ | | ره | Ŋ | کب | و | يب | رعج | فز | | | · · · | یج | نز | 4.0 | لح | Ö | نه | | يه | ,
, , , | ن | رعب | فح | | | | | | نو | لح | ب | 4. | ط | <u>-</u> | ب | | رعا | 1 | | | | کہ | نو | | | | ٠. | | • | | یب | رع | ص | | مو | نط | • | نو | | 5 | نن | يد | نا | نب | نوا | لي ا | ر سط | صا | | ند | نط | لو | 40 | به | ما | نند | ید | | مه | | يا | ر سح | صب | | مو | • | | نه | ۲۱; | ١ | ڼب | بد | 15 | لز | . | ر ا
او | ر سز | صبح | | مه | | _ | ند | لد | کب | مط | ید | د | J | نان | ا | رسو | صد | | یج | نو: | ð | ند | کح | بج | ۵۹ | ید | من | الو۲ | مط | 6 | رسه | صه | | كط | ایا | ١ | ند | 6 | ے | مد | ۳٠ | لط |
بلة | يوت | l | رسد | مو | | و | ، يط | لز | نج | 2 | á | ِ
ما | ید | 5 | -
- | مله | l | ر سېج | صر | | و | يط | ء
ج | نج | مب | ما | 7 | تد | ک | 1 | ملج | i | ۔
رسب | صح | | ۔
کح | ٠ | مط | نب | ۔۔۔
ع | 7 | الو | يد | 5 | ۔ ۔
با | ب ن | - T | | صط | | <u> </u> | یخ | 25 | نب | y | كط | بخ | يد | | من | ا الح | <u>-</u>
ا | َ
رس | ا ق | | } | ع ا | ٰ ب | | İ | l; | ا | رد | اا | ما | ، ب
الر | | ارنط
ارنط | 1.5 | | | | • 1 | !! | | . : | | | | : | <i>.</i> | - | | | (۱) ب: لد (۲) ب: يا (۳) ب: ک | | | | | | | | | | | | | | _ | |-----|------|----|----------|------|----|-----|-----|----------|----|----------|----|------|----------| | ب | ب | 2 | نا | 15 | 1 | کے | 4 | مو | ं। | به | 1 | رځ | فب | | يد | 1, | يط | t | 3 | 4 | 5 | 1 | 90 | کح | ٤ | i | رن | ٦. | | لو | مد | 1 | ن | ب | £ | کب | 4 | نو | ک | J | j | و نو | k. | | ٦ | کج | کح | ن | 1 | 8 | 4 | بد | 1 | Z | 2 | 1 | رنه | • | | • | ٠ ﴿ | • | ن | و مك | مد | 3 | يد | 5 | Ē | 2 | j | رند | قو | | ج | نز | L | مط | 2 | ٦ | 4 | بد | مز | 9 | 25 | · | رخ | قو | | الو | ج | ٤ | 18. | لو | لي | بب | ٦, | • | ب | ک |
• | رت | 7 | | 1 | الو | ď. | ٤ | لوا | نز | 1 | يد | T | ÿ | 1 | i | رتا | فط | | * | 9 | t | بح | 9. | ک | 3 | يد | مز | ع | 2 | Ī | رن | ق | | یب | کد | ی | ع | 3 | مز | 3 | il. | • | • | • | 1. | ومط | ٠ | | 3 | عملا | 30 | مخ | 1 | £ | ب | 4 | 4 | مو | 3 | f | دع | نب | | ٤ | ک | 8 | من | ננ | 40 | 1 | بح | يد | ٤ | ı. | i | رمز | فبج | | خ | 3 | 3 | مز | • | ز | ż | ج | <u>ن</u> | 16 | ط | ١ | رمو | فد | | ب | نو | ٥ | a | ŀ | لد | ند | بج | 8 | لط | <u>ز</u> | وا | رمه | | | 4. | نو | 8 | مو | لمل | ٦ | نب | ج | نو | لے | • | 1. | رمد | فيو | | ج | 9 | نز | 4. | ٢ | ب | مط | ج | ٦ | ٤ | ٦ | ŀ | رج | فيز | | 5 | 2 | 4 | 40 | 40 | ب | مو | بج | بب | ٤ | 1 . | j. | رمب | فبح | | 'ند | نو | بج | 4 | ÿ | بل | مد | 3 | ٤ | ٤ | خ | ی | رما | فبط | | ج | Ł | ڹ | 4 | مد | ٥ | مب | ج | مز | لط | نو | ی | رم | قك
من | | بب | J | K | مد | ٦ | ز | لط | بج | ٤ | 6 | 4 | ی | راط | نگا | | i | 4 | ی | مد | ی | S | الز | 3 | ٦ | مد | نج | ی | رځ | نکب | (۱) پ: و (۲) پ: لو. | | | | | | | | | | | T | | | | |-------|------|-------------|----------------------|------|-----|-----|------|------------|------|-----------------|----|-------|-----------| | ځ | نا | مط | بمح | 2 | مد | لد | 3 | لخ_ | مز | li, | ی | | فكج | | بج | لط | كط | بج | کید | لط | يب | یج ا | <u>ل</u> م | نا | مط | ی | ر لو | قكد | | ير: | 1 | ط | بح | צ | نه | كط | بج | کم | نو | مز | ی | li | فک | | 占 | نه | بع | مب | لو | لب | كز | یج | ٥ | ب | ۸و | ی | رلد | فكو | | لط | ح (| كط | مب | نه ۱ | ی | ৰ্ম | یج | مد | ح | مد | ی | ر لج | قكز | | الراب | که ا | ط | مب | لد | ن | کب | بج | کز | يو | مب | ی | ٠ رلب | فكح | | ب ا | 1 | ع | ما | 8 | Z | 4 | يج. | نب | 25 | ^ | ی | ر لا | قكط | | كط | يب | j | L | ن | يب | لح | یج | يو | ۽ لد | لح | ی | ر ل | قل | | کد | بح | ١ | ما | نط | نه | به | بج | مز | مد | او | ی | ر کا | قلا | | ^ | يط | بج | a same market of our | لب | P | يج | بج | کو | نو | لد | ی | رکح | | | لط | نو | لد | ا م | لد | 2 | یا | بج | 41_ | ط | - آج | ی. | ر کز | قلج | | ج | مط | <u>ب</u> و. | ^ | كز | بر. | ط | £. | لد | کج | צ | ی | اد کو | | | ما | نط | ۼ | لط | ١ | ج | ز | یج | \$ | لز | كطا | ی | ر که | قالم | | کح | 26 | ما | الط | کز | نج | د | £ | 4. | لد | كز | ی | ر کد | أقلو | | کد | ی | کد | لط | له | 40 | ب | يب | ځ | يب | 25 | ی | ر کج | قلز | | نب | بج | ز | لط | لز | لط | • | يب | لد | Ŋ | کد | ی | ركب | قلح | | 73 | K | ن | لح | ب | له | نح | یب | ١ | نب | کب | ی | ر کا | قلط | | 24 | ط | لد | | لز | لح | نو | ب | ٥ | ید | 5 | ی | ر ك | قم | | لد | و | ع | لح | نج | Ŋ | ند | ب | Z | لز | يط | | ر يط | قا | | 7 | کب | ب | 7 | ر ا | لج | ڹ | ب | J | ب | يع | | د بح | قب | | نو | نز | مو | لز | لج | لو | ن | بب | يد | كط | لو | ی | ر یز | قب | ⁽١) ب: ند (٢) ب: كب . | | | | | - | | | | | | - | ٠ | ٠, • | | |----|-----|----------|-----|----|---------|----------------|-----|-----|-----|--------|---|------|----------| | ی | ع | Y | لز | ن | ما | بح | بب | کح | يز | پد | ی | ر يو | قد
قه | | لد | ح | بز_ | ارز | کب | يطا | ٨ۏ | | كط | كز | بج | ی | ر يه | | | كز | مد | ب | لز | نط | بح | مد | بب | ٔ ز | نط | P. | ی | ر يد | ا قو | | بج | ما | ځ | لو | بط | ی | بج | یب | مز | کب | .ی | | ر بج | | | ط | انط | لد | لو | نو | کد | ما | یب | بح | ز | لط. | ی | ر بب | قح | | Ł | لخ | 5 | لو | کد | مب | 7 | بب | نو | مه | ٠ ز | ی | ر یا | قط | | لح | لط | ۲ | لو | 5 | نز | الز | یب | نب | 8 | 9 | ی | ر ی | قن | | کب | ج | بو
يو | 4 | مه | کب | الز | Ţ. | بب | • | ٥ | ی | ر ط | قنا | | يب | مط | بج | له | مد | مو | لز | يب | کج | مط | ح | ی | ر ح | قنب | | مط | بز | X | له | نه | بج | بخ | یب | į . | له | 4 | ی | ر ز | قنج | | لد | كط | 4 | له | لد | بج | K | يب | نا | کب | 1 | ی | ر و | قند | | مب | کو | 4 | له | ج | يو | J _. | بب | ن | یب | •1 | ی | ر د | قنسه | | کج | بج | نح | لد | ید |
 6 | کے | یب | نط | ٥ | نط | ط | ر د | قنو | | نز | 5 | ځ | لد | کو | كط | Ž | یب | لب | نط | ا مر ا | ط | ر ج | قنز | | نو | لب | لح | لد | + | اي | کو | بب | ید | نوز | ا نو | ط | ار ب | قنح | | مو | 7 | كط | لد | بج | ند | کد | بب | نه | مُ | الما | ط | ارا | قنط | | ج | • | গ | لد | ج | مب | کج | یب | لط | ý | ند | ط | ١ | قس | | ڊ | 6 | يا | لد | كط | ٔ با | کب | ب | نط | 1 | ند | ط | قصط | قسا | | نط | و | 3 | لد | ی | کو | 6. | ٠,٢ | نو | 7 | 7 | ط | قصع | قسب | | لو | یع | نه | بخ | د | کج | ك, | ب | كز | بج | نپ | ط | قصز | قسج | | مر | li | مز | ٠ | نب | كج | يط | ب ا | ٥ | צ | انا | ط | قصو | قيرد | (١) ب: ط (٢) ب: لو (٣) ب: د . | | | | | • | | | | | | | | | | |---------|------|----|------|------------|------|-----|------|-----|--------|------------|---|-----|-----| | | ع | م | لج ا | . . | كط | | | | | | | قصه | | | مه | 25 | لد | + | 75 | j | ير | ب | کب | • | ن | ط | قصد | قسو | | يط | کب | کح | + | 2 | مد | يو | بي | کح | کج | مط | ط | قصح | قسز | | مب | بج | كب | + | ما | نط | مِه | ب | مه | مز | ځ | ط | قصب | قسح | | 75 | X | پر | 1 | له | نه | به | يب | کح | ځ | 5 | ط | قصا | قسط | | | مو | 1 | ج ا | ¥ | - لو | ید | يب | 'یج | \$ | ن ز | ط | قص | قع | | 25 | 75 | ح | + | | | | | | | | | قفط | | | كط | له | د | ا لج | يب | J | 3 | یب | ط | ع | مو | ط | قفح | قعب | | h | ی | , | با | 4 | 1 | یج | یب | د | S | مو | 山 | قفز | قعج | | \ E | یج ا | نط | الب | , | * | يب | | .ځ | | | ط | قفو | قعد | | ا
ما | مب | نه | ب | يز | يو | يب | ب ا | ب | المطاع | مه | ط | قفه | قعه | | عي ا | لط | نج | اب | يز | نط | اي | يب | دو | बै | do | ط | قفد | قعو | | 75 | 5 | نب | لب ا | ج | مو | يا | | ن | كد | 4.5 | 上 | قفج | قعز | | نب | ىد | ن | لب | مه | لو | يا | بب | 25 | · シ. | do | ط | قفب | قعت | | بج | ع | ن | با | ب | Å | ا | یب ا | ن | یب | 40 | ط | قفا | قعط | | • | | ن | اب | ط | کا | ١ | اب | يط | ١ | مه | ط | قف | قف | ⁽١) ب: كا (٢) ب: ١٠ (٣) ب: سو (٤) ب: مط الياب الحادي عشر في معرفة ظل نصف النهار ينبغى ان يتصور طرف المقياس رأسا مشتركا لمخروطين متقابلين في الوضع قاعدتاهما كل مدار بن متساويبي البعد عن معدل النهار نحو جهتین لان الشمس اذا دارت فی احد هذین المدارین رسم شعاعها ه الذي بين رأس المقيـاس وبينهما كالخط الواصل بينهما مخزوطا يسمى مخروط الشعاع ، فاذا مرّ على استقامته بلغ محيط المدار الآخر النظير لكون رأس المقياس بقوة مركز العالم، و لهذا يحصل منه مخروط يسمى مخروط الظل٬ و سطح الافق يقطعهما على محيطي قطعين متقابلي الوضع من قطوع المخروط زائدين فلهذا يرسم طرف الظل في معمورة الارض ١٠ طول النهار قطعا زائدا سهمه خط نصف النهار وطرف ظل نصف النهار منته الى رأسه، فلذلك صار اقصر الاظلال في اليوم. و اما فيما غدا المعمورة في العروض التي لايقصر عن تمام الميل الأعظم نحو ناحية الشمال فان طرف الظل يرسم فيها قطعا مكافيا و نواقص مع الزوائد و دوائر هي بالحقيقة متصلة للكوكب و لكن ١٥ شرح ذلك بالتفصيل يفضي الى فن لسنا فيه الآن ، و قد تقدم من معرفة ظل كل ارتفاع، ثم معرفة ارتفاع نصف النهار و ما انزاحت به العُلَمَ من ظله و اوجب الاقتصار على ما تقرر من اقتصاص خواصه، فان ار يد فضل ما بين ظـل نصف النهار في بلد مفروض و بين ظـل الاستواء فيه و هو ابد انحو الشال لانه في خط الاستواء معدومُ و عروض ⁽۱) من ج ، وني ب ، و : كا الكوك . البلاد في الربع المسكون شمالية عنه فتماماتها ارتفاعـات معدل النهار فيها من ناحية الجنوب فرؤوس اظلالها اذن نحو الشال. (١) فليكن اب ج د ، فلك نصف النهار و : ب ه د ، قطر الافق فيه و : ا ،سمت الرأس و : ه س٬ المقياس عمودا على الا فق و عرض البلد : ا م٬ ونخرج: م ه ط ، فيكون : ط س ، ظـل الاستواء المحفوظ اصلا للبلاد ه كعروضها و نفرض: م ز ، ميل الشمس شماليا و نخرج: ز ه ك ، فيكون: ك س ، ظل نصف النهار و : ط ك ، نقصا نه عن ظل الاستواء و في مثلث : ه ط ك ، زاوية : ك ط ه ، بمقدار تمام عرص البلد لانها مساوية لزاوية شمال Charles de قطر الافق (44) 10 ز ه ب ، الخارجة و زاوية : ساه ك ، مقدار ميل: از، للتقابل٬ و جيب زاويتي : ه ك ط٬ ه ك س٬ شي واحد٬ لكن زاوية: وكس بمقدار ارتفاع نصف النهار ونسبة جيبها الى جيب زاوية: ك ه س ، تمام ارتفاع نصف النهار كنسبة : ه ط ، قطر ظل الاستواء الى : ط ك ، نقصان الظل فهو اذن معلوم . و نفرض ایضاً : م ح ، میل الشمس جنوبیاً و نخرج : ح ه ع ، فیکون س ع، ظل نصف النهار و : ع ط، زيادته على ظل الاستواء و نسبة جيب ^(;) ابتداء شكل : ٢٩ (٢) كذا و لا و جود لج في الشكل فليتأمل (٣) مين ، ج : ط دك . زاوية : ه ع ط ، الذي بمقدار ارتفاع نصف النهار الى جيب زاوية إ ع ه ط التي الميل كنسبة: ه ط و قطر ظل الاستواء الى : ع ط و زيادة الظل و هي معلومة . #### و حسا به ان نضرب قطر ظل الاستواء في جيب ميل الشمس ونقسم المجتمع على جيب ارتفاع نصف النهار فماخرج فهو فضل الظل فان كان الميل شما ليا نقص هذا الفضل من ظل الاستواه ، و ان كان المل جنوبيا زيد هذا الفضل على ظل الاستواء فيحصل بعد الزيادة و' النقصان ظل نصف النهار . و قد و ضعناه في هذا الجدول لبلد غزنة فمتى نقص من بعد درجة الشمس لنصف نهار اليوم عن اول الحمل تسعون درجة ابدأ و ادخل بالباقي في سطري العدد و جدنا بازائه بوعا الظل لنصف النهار . وهذا هو الجدول | | مکو س | ظل الم | ال | | وی | المت | الظر | الصاعد | الهابط | |-------|------------------|---------|-------|--------|------|-------|-------|-----------|----------| | و الث | ه و انی
موانی | د قام ا | اجزاء | يو الث | ر ان | دقائق | الياج | النصف الع | النصف ال | | 25 | ط | ۲ | c | څ | • | ز | ب | شنط | 1 | | لد | , a | لط | ٥ | بج | ط | ز | ب | شنح | ب | | لد | یا | لط | ٥ | یب | كج | ز | ب | شانز | ح | | 1 | ٢ | لح | ٥ | ب | يز | ٔز | ب | شنو | ٤ | | ز | • | لح | 0 | لد | ا | ح | ب | شنه | ٥ | | يط | 25 | له | 0 | ی | بز | ٦ | • | شند | و | | آ | له | لد | 3 | لح | ب | ط | ب | شنج | <u>ن</u> | | كط | + | لب | o | نح | g | ی | 7 | شنب | 7 | | يط | + | ل | s | ند | ڹڒ | ی | | شنا | ط | | ٥ | ین | کح | ٥ | يو. | ج | لي | ب | شن | ی | | مه | مو | Q | ٥ | 9 | . نو | يب | ب ب | شمط | <u>L</u> | | يو | ب | کج | J | مه | يد | يد | ب | شمح | Ļ | | نه | ح | ع | ٥ | و | يو . | 4. | ب | شمر | Ê. | | ع | t | ً يو | 2 | ح | al | يو | ب | تثمو | يد | | لو | که | 3 | ٥ | نه | نط | یز | · | ٩٣٠ | 4. | | ح | نو | ٔ ط | ٥ | لج | كط | يط | . ب | شمد | يو | | ز | 5 | و | ٥ | ج | الو | K | ب | شمج | يرت | | کب | نو | ز | ۵ | يج | ع | كب | ب | شمب | <u>غ</u> | |-----|----------------|------------|----------|-----|----------------|-----|-----|-----------|-----------| | 3 | 쇠 | ند | د | | يو | | ب | شما
شم | يط | | J | لج | 4 | د | د | J | | ب | شم | <u></u> | | کج | ما | li | د | م | کح | کح | ب | شلط | 8 | | کج | له
ج | ځ | | | لب | J | ب | شلح | کب | | | 3 | | د | نو | | لب | ب | شلز | کج | | ند | ط | لط | د | کز | نز | 괴 | ب |
شلو | کد | | مط | ح | a j | ٥ | کج | بح | لز | ب | شله | 35 | | بج | ٤ | J | د | کح | مد | لط | ب | شلد | که
کو | | ے ا | م | 7و | د | مب | d _j | م | ب | شلج | کز | | بج | بب
نو
نه | کب | د | ب | اس | مد | ب | شلب | کح | | R | نو | يو | ے | • | الد | من | رب | شلا | كط | | 4 | نه | یج | ٤ | لو | 5 | ن | ب | شل | ل | | مو | R | ي | ے ۔ | ح | ىد | خ خ | · | شكط | 7 | | بج | كز | ٥ | ٠, | کو | اِ | نو | ب | شکح | لب | | | ١ | 1 | ے | Y | 7 | نط | ب | شكز | لج | | مد | | ىز | <u>ح</u> | ع | 5 | ب | 5 | شکو | <u>ال</u> | | نب | ٤ | نج | ج | ترس | یز | د | ح | شکه | al | | نط | لز | مط | <u>ج</u> | لم | نب | ۲ | ح | شكد | لو ' | | 7 | مو . | مد | ح | بج | ید | ب | ح | شكج | الز | | مد | مد | 1 ^ | ح | نج | مب | 4, | ا ج | شکب | لے | | 1 | ب | لو | 1 | | | يط | | لشكا | لط | |------|----------|------------|--------|------|----------|----|-----|-----------------|------| | نه | زا | لج | ج | | 3 | کب | ح | شك | م | | ند ۲ | ز | كط | ج | لب ا | لد | کو | | شيط | ىا | | | J | 2 | ج | نو | کب | | ح | شيح | مب | | لط | ن | , 6 | | | | لد | ح | شير | بخ | | يز | 9 | ع ا | ح | لد | ی | لح | ج | شيو | مل | | مط | J | یا | ج | ن | يا | مب | ج | شيه | ٠ مه | | | ٔ د | l <u>ı</u> | ح | | یح : | 1 | ج | شيد | مو | | ی | له | ز | ح | | کح | ن | ج | شيج | مز | | } | o | د | ج | ب | | ند | ج | شیب
شی
شی | ځ | | ير. | ن | • | | لج | ٤ | • | ے | شيا | مط | | | لز | نو | ب | 4 | کز
ما | ح | 3 | شى | ن | | , | 5 | ند | ب | كز | ما | ز | د د | شط | ៤ | | کح | مب | li | ب
ب | ەب | کط | یب | ٤ | شح | نب | | يط | د
 | ع | ب | کب | ٔ ز | يد | د | شز | نج | | ب | 1 | مه | ب | يح | ځ | 8 | ٤ | شو | ند | | 75 | ح ا | مب | اب | ب | کج | 25 | ے ۔ | شه | di | | يد | 4. | لط | ب | یج | 2 | A | ٤ | ا شد | نو | | + | نط | ا او | اب | نو | 4 | لو | ٤ | شج | ا نز | | مه | لز | + | اب | لد | کج | ما | د د | شب | ا غ | | J | نه | J | اب | اله | که | مو | 2 | شا | نط | ⁽۱) ب: يد (۲) ب: لد، | ی | لط | کح | <u>ب</u> | لز | J | េ | د | m | س | |------|------|----|----------|------|---------|-----|---|-------------|-----| | بط | + | کہ | ب | • | مو | نو | د | رصط | سا | | کج | نز | کج | <u>ب</u> | نه | ب | ب ا | ٥ | رصح | سب | | طي | لد | 3 | • | كط | كج | ن` | • | رصز | ۳۳ | | کد | ی | ع | ب | بج | مط | یب | 0 | رصو | سد | | | | يه | | و | <u></u> | بح | ٥ | رصه | سه | | 1.00 | | بج | | 25 | | | ٥ | رصد | سو | | کد | ی | | | کز ' | | | ٥ | ر صبح | سز | | ځ | یج ا | ح | ÷ | کح | نز | لد | ٥ | رصب | سيح | | نه | مد | و | ب | يا | بط | لح | ٥ | رصا | سط | | مب | لو | د | ب | K | مط | مو | 3 | رص | اع | | بج | كط | ب | ب | يط | بج | نب | • | رفط | le | | | يط | | | کہ | بج | نح | 3 | ر فح | عب | | مد | كز | خ | ١ | يو | 40 | د | 9 | رف ز | عج | | ا ز | 7 | نو | ١ | ح | بج | ی | و | ر فو | عد | | ځ | الو | ند | 1 | لز | 3 | یر | و | رفه | 4C | | لزع | مب | نب | ١ | بج | بج | کج | 9 | ر فد | 36 | | او | ند | ن | | ما | لط | کط | و | ر فج | ء. | | J | ا و | مط | \ | بط | كح | له | 9 | رفب | عح | | کد | 5 | مز | , | R | ل | مب | و | ر فا | عط | | ط | الط | 44 | ١ | بح | ب | مط | 9 | رف | ا ف | | م | نز | مج | ١ | ما | لو | نه | <u> </u> | ر عط | ا | |---------|----------|------|--------------|------|-----|----------------|----------|------|----------------| | نج | يط | مب | ١ | ٔ یج | يط | ،
 | ز | رعح | ف ب ـــ | | بح | مب | ^ | 1 | K | ب | ط. | <u> </u> | رعز | من فج | | کح | ح ا | لط | ١ | J | ن | يه | ا ز | رعو | فد | | بج | لو | يو` | 1 | نط | مد | کب | ز | رعه | 49 | | نز | 3 | يط | ١ | نب | لز | <u>کط</u> | ز | رعد | فو | | بج | لب | مب | 1 | نز | ٢ | او | ز | ر عج | فز | | ما | ی | ح | 1 | li | مد | بج | ز | رعب | فح | | 1 | 4. | لو | 1 | ط | نج | ن | ز | رعا | فط | | ١ | کج | ۲, | ١ | يځ | و | خ . | ٔ ز | ر ع | ص. | | کح | • | كط | 1 | مو | 5 | 0 | ح | رسط | صا | | ز . | هب | كز | ١ | کب | مد | يب | 7 | رسح | صب | | مط | | | ١ | اً ا | ۲ | ٤ | ح | رسز | صج | | يط | ز | که | | لح | ق | ک ز | ۲ | ر سو | صد | | نو | نب | کج | 1 | لط | ی | ها | ۲ | رسه | صه (| | ۴ | لح الله | کب ا | \(\) | ج | مد | مب | | رسد | صو | | ن | کز | R | ١ | مو | لز | ن | ح | رسج | صز | | یز
۔ | مز ۲ | 4 | ١ | ع ۔ | ايا | نح | | رسب | صح | | که | ی | بط | 1 | مد | من | 0 | ط | ر سا | صط | | له | • | ځ | 1 | ند | يب | بج | ط | رس | ق | | لط | ند | يز | ١ | 26 | 4.0 | R | ط | رنط | قا | (١) ب: از (٢) ب: ل (٣) ب: يز٠ | | | | | | | | | | | |------|-------------|----------|-----|-----|-----|------|------------|------|-------| | 4 | ن | 4 | 1 | 8 | ع | كط | ط | رنح | قب | | h | مو | يد | 1 | من | ز\ | 1 | ط_ | رنز | قح | | 4. | مد | 3 | 1 | نز | نو | مه | ط | ر نو | قد | | 3 | 3 | يب | 1 | لب | ي | ند | ط | رنه | قه | | لد | 3 | ŀ | 1 | 1 | 6 | ب | ی | رند | قو | | لد | 40 | ی | : } | يط | ما | ی | ی | ر نج | قز | | al | مو | ط | • 1 | ب | يز | يط | ی | رنب | قح | | نا | ن | ۲ | 1 | | K | كز | ی | رنا | قط | | ی | يز . | ن | 1 | نب | 4, | યં | ی | رن | قى | | 1 | ج | ز | 1 | la | .بح | Ja | ی | رمط | قيا | | يو | ی | • | 1 | بح | نح | نب | ي | ر مح | قيب | | مو | ع ا | • | ١. | | مط | | ١ | ر مز | قيج | | لو | 7 | د | 1 | کج | بج | ی | ل | رمو | قيد | | کج | خ | ع ا | ١ | ج | • | يط | ال | ر مه | قه | | مو | مط | ا ب | 1 | کو | مه | کز | ξ, | رمد | قيو (| | مد | ١ | ب | \ | بو. | كط | لو | ļ <u>.</u> | ربج | قيز | | + | a. | 1 | 1 | J | کد | مه | <u>,</u> | رمب | قيح | | مد | عط | • | 1 | مط | يز_ | ا ند | <u>l</u> | ر ما | قط | | LP. | مد | نط | . } | يط | مد | ا ح | بب | رم | قك | | R | 1 | نط | | يط | ح | ب | یب | رلط | نکا | | ا يو | ځ | انح | | ا ج | د | 8 | بب | ر خ | قكب | ⁽۱) ب: ن (۲) ب: ج (۲) ب: نا ، | | | | | | | - | | ··· | | |-------|------|------|------------|------|------------|----|----------|------|------------| | · y | لو | نز | | نط | 7 | J | ب | ر لز | قکج
قکد | | 35 | 4. | نو | | 8 | ح | لط | يب | ر لو | قكد | | ١ | i | نو | | یح | و | ځ | يب | رله | ذکه | | ع | له | نه | • | ج | يا | نو | يب | ر لد | قكو | | لز | نز | ند | • | 42_ | ٤ | و | بج | ر لج | قكز | | لز | يط | ند | }
}
 | كط | لط | .ځ | بج | رلب | قكح | | نط | | بج | • | 25 | نب | کد | | ر لا | قكط | | | ز | بج | • | بج | J | لح | ج | ر ل | قل | | مز | K | ښ | | وا | لج | مب | بج | ر کط | قلا | | 8 | i | انا | • | مد | لد | ાં | <u>غ</u> | رکح | قلب | | یب | کد | نا | • | K | مب | • | ىد | ر کز | قلح | | اله ا | 1; | ن | • | ید | مب | ط | يا | ر کو | قلد | | نط | ع | ن | • | نط | اد | لح | ٨ | ر کہ | قاله | | د | ع | مط | • | . بو | م | كز | يد | ر کد | قلو | | مد | یر | مط | • | لط | لو | لو | ید | ر کج | قلز | | نو | مز | ع | • | نو | کب | مه | ید | رکب | قلح | | } | بط | ځ | • | 4 | بر | ند | يد | ر کا | قلط | | ب | ١, ، | : مز | • | م | ٥ | ح | 41_ | رك | قم | | لو | لج | ً مر | | اط | مو | يا | طي | ريط | قها | | ما | ! نز | مو | • | 25 | <u>.</u> و | 실 | 4. | ر بح | قب | | نو | J | مو | 1 | ا ب | نه | کح | هل _ | ر بز | قمح | (۱) ب: يط (۲) ب: يه (۱) ب: يه (۱) | | - 'بر' | | | | | 211 | ١ (- | المسعودي | العالوك | |----------|--------|-----|-----|-----|----------|------|----------------|----------|------------| | نا | 0 | مو | • | J | كز | لدا | 40_ | ر يو | قد | | | | مه | • | نز | مو | 4.0 | به | ر يه | قه | | 6 | يز | da | • | کج | نه | یج | 44_ | ر يد | قمو | | كز | ند | مد | . • | يد | ی | ب | يو | ر څج | ق ر | | | لب | مد | • | ندا | يو | ی | يو | ر يب | قح | | | ی | مد | • | | کد . | 3 | <u>ب</u> و | ر یا | قط | | لو | | ج | • | | * | كب | <u>.</u>
يو | ر ی | قن | | يط | كط | * | | مب | 76 | + | بر. | ر ط | قنا | | I | ط | بج | | نط | | ما | <i>y.</i> | رح | قنب | | 40 | ř | مب | • | لط | کب | ځ | <u>بر</u> | ا رز | قنج | | ح | بخ | مب | • | یب | لب | di | یز | رو | قد | | لز | 40 | مب | • | يب | 2 | ب | يز | ر ه | قنه | | من | | ما | • | يب | مه | ط | <i>y.</i> | رد | قنو | | نه | مب | ما | • | f | .ط | 4. | ير. | ر ج | قنىز | | 1 | كز | لما | • | کج | يو | کب ا | | ر ب | قنح | | ۳. | بج | ما | • | کب | Ž | نه | | ارا | قنط | | ٥ | نط | ^ | • | ج | کج | الد | يز | <u> </u> | قس | | مد | له | ٢ | • | نو | , | م . | بز | قصط | قسا | | نه | بج | ۴ | | الب | کد | 46 | <i></i> | قصح ا | قسب | | ی | R | ٢ | | ح | • | ن | <u>.</u> | فصر | قسج | | نز | ا ط | ٢ | • | کج | مز | نه | يز | قصو | قسد | (۱) ب: از (۲) ب: نع (۲) ب: د . | , | | | | | | | | | | |------|------------|---------|-----|----------------|-----|----|------|-------------|-------| | الما | نظ | لط | • | لد | 7 | • | 3 | قصه | قسه | | مه | مط | لط | • | 1 | | • | ع | قصد | قسو | | | | | • | الد | يا | ط | بح | قصح | قسز | | و | لب | لط | • | 5 | د . | بج | بخ | قصب | قسح | | يو | کد ا | لط | • • | ۲ | لط | ید | بح | قصا | قسط | | و | <i>j</i> . | اط | • | 25 | نه | | ع | قص | قع | | لو | ی | ح | • | 4. | يج | کب | یح | قفط | لعا | | من | د | ۲' | • | مد | لب | کم | غ | قفح | قعب | | لط | نط | لح | | ا خ | يج | كز | ج | قفز | قعج | | 3 | نو | 7 | • | يد | يو | 五 | یع | قفو | قعد | | + | t | لح | | مط | غ | Ŋ | ج_ | قفه | قعه | | لب | ع | <u></u> | + | ۽ يج | بخ | + | یج | قفد | قدو | | ايا | ا مو | ا لح | | ا یح | كز | لد | . بح | قفج | قعز ا | | ل | مد : | ٤ | | ھد | 5 | 4 | بح | قفب | قىح | | كظ | ع | 7 | | الو | أمن | له | بح | قفا | قعط | | ط | ع | ځ | • | لج | ٠,٠ | له | ع ا | قف | قف | (۱) ب: اط ### الباب الثاني عشر في سعة المشارق والمغارب واستخراجها ومعرفة عرض البلد منها اذا أردنا سعة مشرق درجة في بلد معلوم العرض قسمنا جيب ميل تلك الدرجة على جيب تمام عرض البلد فيخرج جيب سعة مشرق هُ الدرجة أو مغربها في جهة ميلها و تساويها سعة مشرق نظيرتها ومغربها في خلاف جهة هذا الميل فان كان الميل الأعظم كلنت هذه سعة مشرق المنقلب ويوصف بالكلي فان كانت مفروضة في بلد و اريد سعة مشرق درجة غير المنقلب ضربنا جيب ميل الدرجة في جيب سعة المشرق الكلى و قسمنا المجتمع على جيب الميل الأعظم فيخرج جيب سعة مشرق ١٠ الدرجة و معلوم في عكسه ان سعة مشرق الدرجة المفروضة اذا كانت معلومة واريد منها عرض البلدفانا نقسم جيب ميلها على جيب سعة مشرقها فيخرج جيب تمام عرض البلد والعمل لسعة مشارق الكواكب مطرد على ما ذكرنا اذا استعملت ابعادها عن معدل النهار يدل ميل ثم نقول لتقربر الحال و ايضاحه ان الافق ينقسم بفلك نصف النهار الى نصفين يكون الشروق من احدهما و الادول في الآخر و وسطه نصفه الاول يسمى قلب المشرق و مشرق الاعتدال
او الاستواء و وسط النصف الآخر يسمى قلب المغرب و مغرب الاعتدال او الاستواء وعليهما عمر معدل النهار دائما لكن معدل النهار يقسم الأفق الى ⁽١) ب: ميلها (٢) ب ، ج: بدل . نصفین ینسب احدهما الی الشهال و الآخر الی الجنوب فصفات ارباع الأفق اذن مركبة منهما لتداخلهما فالذي بين المشرق والشمال شرقى شهالي و منه طلوع ذوات الميول و الابعاد الشهالية . و الذي بنن الشمال و المغرب غربي شمالي و فيه افو لها و الذي بين المغرب و الجنوب غربي جنوبي و فيـه مغيب ذوات الميول و الابعــاد ه الجنو بية والذي بين الجنوب و المشرق شرقى جنوبي ومنه طلوعها، ولان الافق في خط الاستواء مار على قطى الكل فان المشارق والمغارب تتباعد فيه عن مطلع الاعتدال ومغربه بقدر الميول واما في الافاق التي يرتفع فيها القطب فان هذه الابعاد تفضل على الميول دائمًا وتزداد على ازدياء العرض اتساعا الى ان تبطل المنقلين في العرض المساوى ١٠ لنهام الميل الأعظم بالنقاء مشرقهما مع مغربهما و لعلة الأعمال المتقدمة (١١ فليكن: ١ ب ج د ، فلك نصف النهار و: ١ ه ج ، نصف معدل النهار على قطب : طرو ، ب ه د ، الا فق فنقطة : ه ، مطلع الاعتدال و ليطلع درجة اوكوك على نقطة: ح ، و نجيز عليها دائرة : ط ح ز ، فيكون: ح ز ، ميلها و : ح ه ، سعة مشرقها و نسبة جيب : ح ه ، الى ١٥ جیب: ح ز ، و جیب : ه ك ، الی جیب: ك ل ، هنی كنسبة جیب: ه د ، الربع الى جيب : دج ، فلتساويها تكون نسبة جبب : دح ، الى جيب : ح ز ، تمام عرض البلد و : ه ح ، سعة المشرق معلومة او ان كانت مفروضة فان : دج تمام العرض و يكون معلوما . ⁽١) ابندا. شكل .٤ . لنفرض ايضاً نقطة : ك ، لطلوع المنقلب و نجيز عليها : ط ك ل ؛ فيكون : ك ل ، الميل الاعظم و : ك ه ، سعة المشرق الكلى وكل واحدة من نسبتی جیب : ه ح ، الی جیب : ح د ، و جیب : ه ك ، الی جیب : ك ل ، هي كنسبة جيب : ه د ، الى جيب : د ج ، فلتساويهما تكون ه نسبة جيب : ه ح ، سعة المشرق الجزءي الى جيب : ه ك ، سعة المشرق الكلي كنسبة جيب: ح ز ، الميل الجزءي الى جيب: ك ل ، الميل الأعظم الكلى و ذلك ما اردنا ان نبت . الباب الثالث عشر في معرفة السمت من قبل الارتفاع اذا أردنا سمت ارتفاع مفروض للشمس أو لغيرها من الكواكب حصَّلنا جيب سعة مشرقه و جيب تمام ارتفاع نصف نهاره و جهتيهما فان كان ارتفـاع نصف النهار و سعة المشرق معاً فى جهة واحـدة من الشمال او الجنوب اخذنا فضل ما بين الجيبين و ان كانا مختلفي الجهتين ٥ جمعنا الجيبين و ان عـدم احدهما استعملنـا الآخر كما هو بان نضر به او الحاصل من الجمع و الفضل و ليسم ضلعاً في جيب الارتفاع المفروض . في الوقت و نقسم المجتمع على جيب ارتفاع نصف نهاره الفا خرج نجمعه الى جيب سعة المشرق ان كانت جنوبية و نأخذ فضل ما بينهما انكانت شهالية فتحصل حصة السمت و ان عدمت سعة المشرق كان ما خرج ١٠ حصة السمت نفسها و متى عدمت حصة السمت عدم السمت لكونه على مشرق الاعتدال أو مغربه فيسمى ذلك الارتفاع الذى لاسمت له ثم نقسم حصة السمت على جيب تمام الارتفاع الممطى في الوقت فيخرج جيب بعد السمت عن خط الاغتدال/ فاما تمييز جهة هذا البعد من شال او جنوب و تمييز جانبه من مشرق او مغرب، فان سموت الميل ١٥ الجنوبي لاتكون الا جنوبية وكذلك تكون مع عدم الميل، و اما في الميل الشهالى فيكون شهالية اذا كان الفضل لجيب سعة المشرق على الضلع و جنوبية اذا كان الفضل للضلع ويتوسطهها الارتفاع الذى لا سمت له عند تساویهها و اما تمیمز الجانب و هو بجانب الارتفاع لانهها مقترنان ⁽١) ب ، ج : النهار . اعنى ان السمت يكون شرقيا قبل نصف النهار وغربيا بعده وسمت طرف الظل يكون بهذا القدر المستخرج فى خلاف جهة سمت الشمس و بخلاف جانبها فاذا أبدلا بنظيريهما صارا للظل . (٢) و لعلة العمل فليكن : اب ج د ، للافق على مركز: ه ، و نخر ج منه ه اهج ، خط الاعتدال و: ب ه د ، خط الزوال و : ح ز ، الفضل المشترك لسطحي الافق و مدار : ز م ط ، و ليكن : ب ط ، من فلك نصف النهار و نبرل عمود : ط ك ، على الافق فيكون جيب ارتفاع نصف النهار و ك ه٬ جبب تمامه و: ه ح٬ جيب: ا ز٬ سعة المشرق و نصل: ط ح٬ وهو الذي يسمى سهم النهار و مثلث: ط ك ح ، مثلث النهار لانه لا يتغير عن ١٠ و ضعه و مقادير طول اليوم، و ليكن الشمس او الكوكب على : م، و ننزل م س ، عموداً على الافق فيكون جيب الارتقاع في الوقت و نخرج : سع، على موازاة : ك ح، و نسميه الضلع و نصل : م ع، فيحصل: م سع، مثلث الوقت و يتشابه المثلثان، فاما : ك ح، فانه يحصل من جمع : ه ك ، الجنوبي الى : ه ح ، الشالي كما في الصورة الثالثة والرابعة ١٥ و الخامسة سعة المشرق شما لية وارتفاع نصف النهار جنوبي و من اخذ الفضل بينهما كما في الاولى التي هما فيها جنوبيان، وكذلك في الثانية التي فيها : ه ح ، معدوم او الفضل هو : ك ه ، نفسه فان لم يكن ارتفاع نصف النهار من جهة الجنوب كما في الزيادات التي في الصورة الثالثة اذا وقع عمود : ط ك ، اما على مركزه و اما فيما بينه و بين : ح ، كان حصول ⁽١) من ١ ، ب ، ج وفي و : طرق (٢) ابتداء شكل : ١١ (٣) ج : الثالة . ك ح ، باخذ الفضل لزوال الاختلاف فيهما عن سمتى الجهتين ايضا و نسبة : ك ط ، الى : ك ح ، كنسبة : م س ، الى : س ع ، الضلع و هو معلوم والمقصود منه: س ف، حصة السمت و هو في الاول مجموع: س ع ، ع ف ، المساوي لـ : ح ه ، وكذلك في الثانية التي ليست : سعة المشرق فيها شمالية ثم هو في الصور الباقية فضل ما بين : س ع ، و: ع ف، ه فلان السمت هو بعد موقع دائرة الارتفاع في الافق عر. خط الاعتدال اذ المواجهة لاتكون الافى سطح هذه الدائرة فانا اذا اخرجنا من: ه ، على: س ، خط: ح ص ، كان الفضل المشترك بين سطحها و بين سطح الافق و نقطة : ص · تقا طعهما فه : ا ص ، يكون بعد السمت عن: أ ، مشرق الاعتدال و في مثلث : ه س ف ، نسبة : ه س ، جيب ١٠ تمام ارتفاع نقطة : م ، الى : س ف ، حصة السمت كنسبة جيب زاوية : ف، القدممة و هو الجيب كله الى جيب زاوية: س ه ف، التي ممقدار قوس: اص، . فامًا وقوع نقطة: ص، من الربعين فيحسب ما بين: سع، ح م، فان: سع، اذا فضل عسلى : ح م، كما فى الاولى والثانية ١٥ والثالثة كان: ص، فى ربع: اب، الجنوبي، واذا قصر عنه كما فى الخامسة كان: ص، فى ربع: اد، الشمالى، واذا تساويا وقع: ص على نفس نقطة: أ، و بطل السمت . ⁽١) ج ، ب : معدوم . الباب الرابع عشر في معرفة الارتفاع من قبل السمت اذا اردنا معرفة الارتفاع من قبل السمت ضربنا جيب تمام بعد السمت عن خط الاعتدال في جيب تمام عرض البلد فيجتمع جيب نقوسه و ننقصها من تسعين ونخفظ جيب ما يبتي ثم نقسم جيب عرض البلد على الجيب المحفوظ فنخرج جيب تمام الارتفاع الاوسط ه فان كانت الشمس او الكوكب المطلوب ارتفاعه من سمته عديم الميل كان هذا الارتفاع الاوسط هو المعدل و ان كان له ميل ضربنا جيب الميل في جيب تمام الارتفاع الاوسط وقسمنا المبلغ على جبب عرض البلد فيخرج جيب تعديل الارتفاع، فانكان الميل الذي استعملناه جنوبيا نقصنا التعديل من الارتفاع الاوسط و أن كان الميل شماليا ١٠ والسمت جنوبيا زدنا التعديل على الارتفاع الاوسط، فان كان السمت شماليا أخذنا فضل ما بين الارتفاع الاوسط وبين التعديل فيكون الحاصل من جميع ذلك هو الارتفاع المطلوب. (۱) و ليكن لبرهانه : اب ج د ، فلك نصف النهار و : ا ه ج ، معدل النهار وقطبه : ط ، و : ب ه د ، الافق على قطب : س ، ١٥ ونخرج: سرص ف ادائرة الارتفاع التي عليها الشمس او الكوكب على : م ، منها فيكون : وص ، بعد السمت عن الاعتدال و: كم تعديله و: م ص ، الارتفاع المعدل المطلوب و نخرج: ط م ز ، فيكون: م ز ، ميل الشمس او الكوكب ثم ندير عملي قطب : ك ، و ببعد ⁽١) ابتداء شكل ٢٤ . . りっ: で(1) ضلع المربع قوس : ل ع ف ، فتكون نسبة جيب : ه ل ، تمام بعد السمت الى جيب : ل ع ، تمام زاوية : ك ، كنسبة جيب : ه د ، الربع إ الى جيب : دج ، تمام عرض البلد فزاوية : ك ، معلومة و جيبها هو المحفوظ ونسبته الى جيب زاوية: ١٠ القيائمة كنسبة جيب: اس٠ ه عرض البلد الى جيب : سك ، تمام : ك ص ، ألار تفاع الاوسط و هو معلوم و نسبة جيب: ك م ، التعديل الى جيب: م ز ، الميل كنسبة جيب: س ك ، الى جيب : س ا ، العرض فالتعديل معلوم و هو نقصان عن الارتفاع الاوسط في الصورة الاولى الجنوبية الميل وزيادة عليه في الصورة الثانية الختلفة جهتي السمت و الميل حتى يحصل فيهما : م ص ٠ ١ الارتفاع المطلوب وهو في الصورة الثانية الشالية السمت فضل ما بين الارتفاع الاوسط بين التعديل، وقد اتضح برهان العمل المتقدم. فاما الارتفاع عند عدم السمت وهو مقتضى الصورة الرابعة التي افردنا ها و نسبة جيب عرض البلد فيها الى جيب الربع كنسبة جيب الميل الى جيب الارتفاع، وقد اتحد الاوسط فيها والمعدل كاتحادهما عند عدم الميــل و تصور ذلك سهل لوضع خامس زائد لا يخني على من تحقق هذه ، و ذلك ما اردناه . ⁽١) ب : لموضع . #### الباب الخامس عشر في معرفة خط نصف النهار بعدة طرق و تصحبحه معرفة الجهات من الاشياء الضرورية في تعرف الأوقات، و قد قلنا ان الافق بالحركة الاولى ينقسم على نقطتي الجنوب والشمال بنصني ه الطلوع والغروب والخط الواصل بينهما يسمى خط نصف النهار و خط الزوال و أن صميمي ذانك النصفين هما مشرق الاعتــدال و مغربه والخط الواصل بينهما يسمى خط الاعتدال وخط الاستواء فمتي عرف وضع احد هذين الخطين عرف منه وضع الآخر و تثبت الجهات الاربع ولاً بد في معرفة ذاك من تسوية طائفة من وجه الارض ١٠ بالغاية التي ان صب عليها شي مايع كالماء والرطوبات السائلة او ارسل علیها متی خرج کالزنق او وضع عـــلی ای موضع منها مترجرج كالبندقة وقف متهزءا مرتعدا ولم يمل الى ناحية منها دون اخرى اذا كان المستعمل دقيق اليو، و ينصب على موضع منه عمود مستو ينتصب عمودا على السطح المستوى ثم نرصد ارتفاع نصف النهار حتى اذا ما ١٥ وقف على أعظم ارتفاعات الشمس في ذلك اليوم اخرج من اصل العمود على منتصف عرض ظله خط فشقه الى طرفه بالطول، و مد في الجهتين على استقامة خط الزوال . و الآفة في هذا العمل أن تفاضل الارتفاع يبرز حول فلك نصف النهار فتمضى مده بتغير فيها السمت و لا يقع الارتفاع تغير محسوس به . ⁽۱) من ب و ج ، ونی **و** : من حرب . و منها ان يقسم هذا المقياس المنصوب باثنى عشر قسما بالتساوى و يقدر منها ظل نصف النهار فى ذلك اليوم و يدار ببعده على مغرز المقياس دائرة ثم ترصد الظل الى ان يماس طرفه محيط هذه الدائرة و يخرج من المركز الى موضع المهاسة خط مستقيم و يمد نحو الجهتين فيكون خط الزوال و الآفة فيه من وجهين أحدهما ان التفاضل المستوى فى الارتفاعات مهما كان الى سمت الرأس أقرب كان التغير فى الظل أقل و أخنى فاذا برز التفاضل فى الاوضاع حول فلك النهار خنى التغير فى الظل جدًا و ثبت على مقداره مدة مع تغير السمت و انحراف الظل له عن خط الزوال فى الجانبين . و الوجه الآخر أنّ المهاسة المحسوسة بين الدائرة و بين طرف الظل ١٠ على خلاف الموهومة لان المحسوسة ليست على نقطة و لذلك صارت ذات مدّة، و منهها أن يحسب فى اليوم المفروض الظلمن الارتفاع الذى لاسمت له و يقدر من اجزاء المقياس و يدار به على مغرز المقياس دائرة و يرصد طرف الظل حتى يد خل الدائرة ان كان المقياس قبل نصف النهار اوحتى يخرج منها ان كان المقياس بعده، و يخرج من الدخل ١٥ او المخرج ايّهها كان الموجود قطر فى الدائرة فيكون خط الاعتدال، والآفة فيه قصوره على و قت و احد لا يتعدّاه . و ربما لم يسمح الحال بانتظاره على أنه اقل غائلة من المعمول بظل نصف النهار لسرعة حركة طرف الظل فيه و بطؤه هذاك و ايضا فمن (١) من ج ، وفي و : الآخر . الواجب أنَّ يستخرج هذا الارتفاع بميل الشمس في نصف النهار و من الارتفاع ما مضى الى ذلك الوقت على الرسم في مثله، ثم يعاد تصحيح ميل الشمس للوقت و استخراج الارتفاع منه، ومنها ان يقصد يوم معينَ ويستخرج سعة مشرق الشمس فيه بميلها لوقت الطلوع اوسعة مغربها ه بميلها لوقت الغروب، و يعمل دائرة واسعة على وجه الأرض المستوى ويقسم باجزاء الدور الثلاث مائة والستين، فليكن في موضع مكشوف للاً فق فيرصد الشمس للطلوع او الغروب حين يكون نصف جرمها ظاهرًا، ويخط في وسط ظل المقياس خط على طوله
حتى ينتهي الى المحيط ويعلم عليه ويعدّ من العلامة في خلاف جهة ميل الشمس سعة . مشرقها او مغربها، و يخرج من المنتهى قطر فيكون خط الاعتدال؛ و الآفةفيه أن الانكشاف المذكور قلّما يتفق في كثر المواضع على ما يجب من غير حائل. و منها إن يحسب الشمس الارتفاع او ظله مفروض القدر في يوم معلوم ويرصد حتى يصير ارتفاع الشمس او الظل عــــلى ذلك المقدار و يخرج على وسط الظُّل قطر يقـاطع الافق على علامة بعد منها ميل ١٥ السمت المحسوب في خلاف جهته، و يخرج منه قطر فيكون خط الاعتدال و الآفية فيه قصوره على وقت ينتظر، وفي الجوَّعوارض ربما تعوق عن العمل عند حضور الوقت المنتظر مع احتياجه الى الحساب . (١)و منها الدائرة المعروفة بالهندية وهي المخطوطة على السطح المستوى و قد نصب على مركزها مقياس جرى الرسم بتصييره مساويا لربع قطر ⁽١) ابتدا. شكل: ٢٢ . الدائرة وليس ذلك بضرورى فيه، وانما قانونه ان يجعل بحيث يقصر ظله في المنقلب الشتوى في ذلك البلد عن نصف قطر الدائرة قصورا صالحا لئلا يمر طرف الظل طول النهار خارج الدائرة او يماسها و لكن يقاطعها في موضعين، ثم يرصد ظل هذا المقياس في نصف الصباح من النهار وهو يتناقص و يتقلص حتى يدخل الدائرة فيعمل على مدخله علامة و يرصد ظله ايضا في نصف المساء من النهار وهو يتز ايد و ينبسط حتى يحرج من الدائرة فيعلم على مخرجه من المحيط علامة و يوصل من يحرج من الدائرة فيعلم على منتصف ما بين الملامتين بخط مستقيم يوتر قطعتي الدائرة بن مجاز على منتصف القوسين و الوتر و المركز خط مستقيم هو خط الزوال والقطرالقائم عليه خط الاعتدال والواحد المنوب ا من نقط تلك الانصاف يكنى مع المركز الآان الباقية المنركز الآان الباقية شاهدة بعضها المعض وهذه صورة مسطاطل المدائرة الهندية والآفة فيها انها مبنية على توازى المدارات و معدل النهار حتى يكون طرف كل ظلين متساويين عن ٢٠ جانبي نصف النهار على الفصل المشترك بين سطحى المدار و الافق و ليست المدارات بالحقيقة موازية لمعدّل النهار بسبب دوام حركة الشمس تغير ميلها كل وقت عن مقداره وخاصة فما بعد عن المنقلبين و لذلك لايكون الفصول المشتركة بين سطوحها وبين سطح الافق موازية لخبط الاعتدال . و لتصحيح هـذا العمل ان يعرف الارتفاع من ظلَّ المـدخلِّ و يعرف بعد الوقت عن نصف النهار فيكون بعد و قت المخرج عنه مثله في الحس ويستخرج ميل الشمس لوقتئذ والسمت لكلا الوقتين ويوخد فضل ما بـــن السمتين و بعد من علامة المخرج نحو الجنوب ان كانت الشمس صاعدة من اول الجدى الى آخر الجوازء، ونحو ١٠ الشال ان كانت هابطة في النصف الآخر فيكو المتهى علامة المخرج المصحح، وحينئذ يوصل بينها و بين علامة المدخل و يعمل بالوتر ما نقدم ولان هذا العمل مضطَّر الى تربُّص و فتين فانه ما و ف بمثل ما قلنا في غيره فانا نعدل عنه الى عمل آخر يحصل فيه المطلوب اي و قت اتفق القياس فيه. (١) و ذلك أن يكون الظل و قت القياس: ١ ه ، و نقيم عليه عمود : ١٥ ٥ ب (مساويا للقياس و نصل ١١ ب ، قطر الظل و نخرج : دج ، موازيا له و مساویا لها ، و ندیر علی مرکز : ه ، و ببعد الظل : ا ط ج ، و علی قطر :ه ج ، نصف دائرة :ه د ج . و نخرج : ا ه ؛ على استقامته الى : د . و ندير على قطر : ه د ، نصف دائرة : ه ل د ، في خلاف الجهة التي فيها خط نصف النهار أعنى الجانب الذي منه تأتى الشمس قبل نصف النهار و الذي اليه تذهب بعده٬ ثم نأخذ: اط مساوية لعرض البلدو: طز٬ مساوية (١) ابتداء شكل : ٤٤ . لتهام ميل الشمس ان كان شماليا و المجموع ميلها و تسعين انكان جنوبيا و نخرج: زح، عمودا على: ه ط، و: جك، موازيا له بقدر: كم، مساويا له: ه ح، ان كان الميل شماليا فنحو: د، و ان كان جنوبيا (ii) فالى مركز: ه ، ثم ندير على : د ، و ببعد : د م ، قوسا ينتهى الى : ل ، و نصل : د ل ، و نخرج : ه س ، على موازاته فيكون خط نصف النهار ، و الما ه أدر نا ببعد الظل لتصير زاوية : ه ا ب على المحيط و فيو ترها ضعف الارتفاع حتى اذا أخرجنا : ه ج ، على موازاة قطر الظل كانت زاوية : ج ه د ، على المركز بمقدار الارتفاع و لمساواة : ه ج ، ه ا ، يكون العمود النازل من ج ، على : ا ه ، جيب الارتفاع لكن موقعه منه على محيط الدائرة التى قطرها : ه ج ، و هو اذن نقطة : د ، وليس فى شكل شى على حقيقة . ا وضعه غير خط : د ه ا ، الذى بحذا السمت و هو فصل مشترك لسطحى دائرة الارتفاع و الأفق فنقطة : د ، موقع جيب الارتفاع فيه بالحقيقة و : ه . موقع جيب الارتفاع فيه بالحقيقة و : ه . موقع جيب الارتفاع فيه بالحقيقة و : ه . حيب تمام الارتفاع و عسلى و ضعه ، و معلوم انا اذا جعلنا و : ه و ساوية لعرض البلد كان : ط ، قطب الظل و : ط ز ، العمود على محور : ط ه . سهم النهار اذا كان تمام ميل الشمس كان : ز ح . العمود على محور : ط ه . سهم النهار في ميله و اما فى الميل الجنوبي فان : ز ن . يبعد عن قطب الجنوب بمقدار في ميله و اما فى الميل الجنوبي فان : ز ن . يبعد عن قطب الجنوب بمقدار تمام الميل وبعده عن قطب الجنوب بمقدار تمام الميل وبعده عن قطب الجنوب بمقدار تمام ذلك الى نصف الدور ⁽۱) **ب** ، ج: د ، و هو تمام التمام مع ربع دائرة و : ه ح ، في مثلث النهار جيب سعةمشرق . (١) ثم نخط لما بقي شكلا منها بالاشكال المتقدمة يكون فيه : ب ه ١٠ خط السمت و: ك ه ، خط نصف النهار و: ه ص ، خط الاعتدال : و:ج د و ، مثلث الوقت الذي هو في الشكل المقدم العمل :ج دك ، ٥ فاذا افرزنا هناك: كم ، مساويا له: ول ، هاهنا بتي: دم ، هناك مساوياً لـ : د ل ، ها هنا و : د ه ، في كلا الشكلين عـلى حقيقة و ضعه و قدره و قد حصل منه حصة السمت التي هي من مثلث الوقت مابين موقع جيب الارتفاع من الافق و بين خط الاعتدال بمقدار ه و لكن على غيرو ضعه و مثلث : دله ، هاهنا قائم زاوية : ل، و نصف دا ئرة : دله ، ١٠ هاهنا هو نصف دائرة: د ل ه ، هناك فاذا اوقينافيه: وتر: د ل ، مساويا له : دم ، حصلت حصة السمت عقدارها و على و ضعها لكن خط نصف النهار دائم الموازاة لها وكذلك أخرجنا : ه ص ، فهو اذن خط نصف النهار و ذلك ما قصدناه . ⁽١) ابتدا. شكل: ٥٤ (٢) راجع شكل: ١٤٤. ### الياب السادس عشر في معرفة عروض البلدان و ميل الشمس من قبل ارتفاعين لها متوالين مع سمتيهما اذا أردنا ذلك قسنا للشمس أو الكوكب في وقنين من يوم واحد ار تفاعين مختلفين فان التساوى فيهما يسقط أحدهما ويبطل النتيجة وقسنا ه مع كل ارتفاع سمته وعرفنا جهته ثم ضربنا لكل و احــد منهما جيب السمت في جيب تمام ارتفاعه فيجتمع حصة السمت فان اختلفت جهتا السمتين جمعنا حصتيهما وأن كانتا واحدة أخذنا فضل مابينهما وذلك هو الأول و اخذنا ايضا فضل ما بين جيبي الارتفاعين و هو الثاني، و أما لعرض البلد فانا نضربكل واحد من الاول و الثاني في مثله ١٠ و نأخذ جذر مجموع المبلغين و نقسم الاول على الجذر فيخرج جيب عرض البلد . و اما لليل فانا نضرب الاول في جيب اعظم الارتفاعين ونقسم المجتمع على الثاني فيخرج العيار، و نأخذ فضل ما بينه و بن عظمي حصتي السمتين فيكون جيب سعــة المشرق و نضربه في جيب تمام عرض ١٥ البلد فيجتمع جيب الميـــل، فان كانا السمتان معا شماليين اوكانا مختلفي الجهتين كان هذا الميل شماليا، و ان كانا جنوبيين معا رجعنا الى العيار و قسمناه الى حصة السمت الأعظم فان كان الفضل للعيار على حصة السمت قالميل شاتى و ان كان الفضل لحصة السمت على العيار فالميل ⁽١) ب ج : الدس (٢) ب ، ج : الدمت . جنوتى و متى ساوى العيار حصة السمت لم يكن للشمس و لا لذلك الكوكب ميل عن معدل النهار و ان كان احد الارتفاعين الذى لاسمت له كانت حصة سمت الآخر هو الاول نفسه . (١) و لنعد لها من صورة الباب الثالث عشر ما يحتاج اليه فلنفرض ه اصغر الارتفاعين اولهما و مثاثه: م س ع ، و حصة سمته: س ف ، و اعظمَ الارتفاعين اخيرهما، و ان كان الأمر في جانب المغرب بالعكس و مثلثه طك ح، وحصة سمته : ك و، والعيار : ك ح، نستوفى وضع الآوضاع ليتطرّق منها الى ما ربما يحل باراده لسهولته و يخرج: س ى ' على موازاة : اه، و : ى ل، على موازاة : ك ط، فينتقل المثلث ١٠ الأصغر الى الأكر ويصير فيه: حى ل، ويخرج: ص ل، على موازاة : ك ح ، فيكون : ص ل ، المساوى لـ : ك ز ، هو الاول و يكون ط ص، الثاني و: ل ط، الجذر لقوته على الاول والشاني و زاوية: ك حط ، ابدا بمقدار تمام عرض البلد لتوازى سطوح المدارات، و زاوية : ح ط ك ، مقدار عرض البلد لانها تتمة تلك الى القائمتين ١٥ ونسبة: ص ل ، الاول الى : ل ط ، الجذر كنسبة جيب زاوية : ص ط ل عرض البلد الى جبب زاوية : ط ص ل ، القائمة فالعرض معلوم و نسبة: ط ص الى: ص ل كنسبة: ط ك الى: ك ح العيار و هو معلووم و : ح و ، جيب سعه المشرق . و هو فى الصورة الأولى فضل الحصّة على العيار و فى الثانية يتساويان ⁽١) ابيدا. شكل: ٦٤ . و سقطان و تبطل سعة المشرق . . و في الثالثة و الرابعة و الخيامسة فضل العيار على الحصّة ، و هو في السادسة العيار نفسه ، وفي السابعة فضل ما بين العيار و الحصة . وقد تبن فيما تقـدم حال جيبي سعة المشرق والميل؛ وسنبن هاهنا ایضا باخراج عمود : و ن ، على : ط ح ، و ذلك جیب المیل ه لمساواته ما بين مزكز : ي ، الكبيرة و المدار من المحور و نسبة : و ح ، جيب سعة المشرق الى: و ن ، جيب الميل كنسبة جيب زاوية : ون ح، القائمة الى جيب زاوية : و ح ن ، و تمام عرض البلد فجيب الميل معلوم و هو جنو بي في الصورة الاولي التي تزداد فيها حصة السمت على العيار ، وشمالي في الصورة الباقية التي فيها يزداد العيار على جهة ١٠ السمت و معدوم في الثانية التي فيها يتساويان . وذلك ما اردنا ايضاحه، # الباب السابع عشر في تعديل النهار وقوسي النهار والليل ومعرفة عرض البلدمنه اذا أرنا معرفة تعديل النهار في يوم معلوم مفروض و بلد معلوم العرض ضربنا جيب ميل درجة الشمس حينئذ في جيب عرض البلد فا اجتمع يقسم عليه جيب تمام ميل الشمس فيخرج جيب تعديل ٥ النهار ، فإن أردنا قوس النهار نظرنا الى درجة الشمس فإن كانت شمالية الميل زدنا ضعف تعديل النهار على مائة وثمانين و أن كانت جنوبية الميل نقصنا ضعف تعديل النهار من ممائة و ثمانين فيحصل بعد الزيادة او النقصان قوس النهار . و اما لقوس الليل فار شئنا عكسنا الشريطة فزدنا ضعف ١٠ التعديل و ان كنا نقصناه للنهار و نقصناه ان كنـا زدناه له و ان شئنا أخذنا تكملة قوس النهار آلى ثلاث مائة وستين فيكون قوس الليل، فإن أردنا الساعات المستوية في أحدهما ضربنا قوسه في أربع دقائق فيحصل عدد السياعات المستوية فيه، و ان عملناه لواحـد منهما و أردناه للآخر ألقيناه من اربعة وعشرين فيبقى المطلوب، و ان أردنا ١٥ معرفة أزمان الساعات لاحدهما ضربنا قوسه في خمس دقائق فنجتمع حصة الساعة الواحدة المعوجة فيه من الازمان، و ان عرفناها في أحدهما و أردناها في الآخر ألقيناها من ثلاثين فيبقي المطلوب • و اما معرقة ازمان الساعات من عدد الساعات و معرقة العدد من الازمان فقد تقدم منه في المقالة الاولى ما يكني ، فنقول في تعليل هذا العمل أن النهار في المدارات الشاليَّة عن معدل النهار زائد عن نصف اليوم في الربع المسكون و في الجنوبية نافص عنه و هذه الزيادة و النقصان يسمى فضل النهار اي فضل ما بيه و بين النهار المعتدل سوا، كان زيادة عليه او نقصانا عنه ، و نصف ه هذا الفضل يسمى تعديل النهار ، و مقـــدار كُل النهار يسمى قوساً له وكذاك قوس الليل لان قطعة الدائرة التي ليست بنصفها تسمى قوسا بالاطلاق بسبب الوتر الذي ليس بقطر و دوران الشمس والكواكب في المساكن ذاوات العروض يكون حمايليًا مقوَّسًا. (١) ولعديل النهار فليكن: آب ج د ، فلك نصف النهار و: ب ه د ، ١٠ العضل المشترك السطحه و سطح الأفق و: اهج ، تقاطع سطحه مع سطح مهدل النهار وقطبه ط، ونفرض: ١ك، ميل الشمس ونخرج: ك- : الفضل المشترك السطحي فلك نصف النهار و مدارهـا و نصل: ط ز ه ٬ فيكون: ﴿ حِبْ جِيبُ تَعْدَيْلُ النَّهِ اللَّهِ اللَّهُ اللَّهُ اللَّهِ اللَّهِ اللَّهِ اللَّهِ اللَّهِ اللَّهُ اللّ و: زه ، ما بين مركزه و بين مركز الكل و هو جيب ميل المدار و نسية: ١٥ زه الى: زح كنسبة جيب زاوية: زحه ، تمام عرض البلد الى جيب زاوية: زهح، عرض البلد لانها نقابل بخط ارتفاع القطب في:
زح، اذن معلوم بالمقدار الذي يه: زك، جيب تمام ميل الشمس ونحن نريده بالمقدار الذي به: زك الجيب كله ، و للتحويل نسبة: زح ، على ما خرج الى: زك عــــلى أنه جيب تمام ميل الشمس كنسبة: ز - ، إلى: ⁽١) ابتدا. شكل: ٧٧ . زك ، بالمقد ار الذي به: ز ك ، الجيب كله ، و اما بالشكل الكرى فنخرج أفق: به د ، و معد ل النهار: اهج ، على قطب: ط ، و مطلع درجة الشمس: ح ، و نخرج قسى : طح ز ، طك ه ، ج حك ، ارباع 3 (£A) 10 فيا بين نهار اليوم و ليله، و ذلك أن زيادة النهار المختلف على النهار المختلف على النهار المختلف على النهار المعتدل هي نقصان ليله عن ليله و مجموع قوسيهما دور فلذلك يكون أحدهما تكملة الآخر، و ضرب قوس النهار أو الليل في ربع وقائق هو قسمته على خمسة عشراً عنى دقائق هو قسمته على خمسة عشراً عنى ⁽١) ابتدا. شكل: ٨٤ . ازمان الساعة المستوية فلذلك يخرج عددها ومجموع عدديها في اليوم اربعة وعشرون فلذلك يبق أحدهما بالقاء الآخر مر. ﴿ هَذَا الْجُمُوعُ الْعَامِ الْعَامِ الْجُمُوعُ الْعَ و ضرب قوس النهار او الليل في خمسة دقائق هو قسمته على اثني عشر أعنى عدد الساعات المعوّجة فيه أبداً ولذلك تخرج ازمان الواحدة ه منهما وزيادتها في النهار مثلا على ازمان الساعة المستوية مساو لنقصانها فى ليله عن مقدار الساعة المستويّة و بالعكس، فمجموع ساعتبن معوّجتين أحدهما من نهار والأخرى من ليله بساوى مجموح ساعتين مستويتين و هو ثلاثون زمانًا، و لذلك اذا ألقيت منه أزمان ساعات نهار بقي ازمان ساعات ليله و بالعكس . #### الباب الثامن عشر في مطالع البروج ومغاربها في البلاد اذا أردنا ذلك قسّمنا ظلّ ميل الدرجة معكوسا على ظل تمام عرض البلد ممكوساً فيخرج جيب فضل المطالع وهو تعديل النهار ثم يؤحذ مطالع بعد الدرجة من اول الحمل في خطّ الاستوا. وينقص منها هذا الفضل ان كانت الدرجة شاليَّة، ويُزاد عليها ان كانت جنوبيَّة فما حصل بعد الزيادة أو النقصان و هو مطالع تلك الدرجة في ذلك البلد، و يكتني لعمل فضل المطالع بربع واحد من ارباع فلك البروج الفضولية، و ذلك انه واحد لدرجتين شاليتين و أخرى جنوبيتين يستوى ميل جميهما و متى عمل ما ذكرنا لدرجة درجة تتم به جدول المطالع في . ﴿ ذَلَكُ الْعُرْضُ ۚ فَا نَ الرَّبِدُتُ لِبُرْجِ مَعْطَى أَوْ قُوسٌ مِنْ فَلَكُ الْبُرُوجِ أَقَلَ أو أكثر عُملت مطالع البلد لكل واحد من طرفيه و ألتى الاقل من الاكثر فيبقى مطالع ذلك البرج او تلك القوس . فاما أخذ المطالع من الجدول بدرج السوا، و تقويس المطالع فيه حتى يؤخذ لها درج السوّاء فعلى مثال ما تقدّم فى الجيب بالجليل المشهور من العملين والدقيق باتبها أريد، و أما اذا كانت المطالع لبرج برج و اريد ه تحويل درج السواء من أحدها الى المطالع أعنى اخذ حصتها منها فطريقه ان نضرب درج السواء فى مطالع ذلك البرج و نقسم ما اجتمع على ثلاثين فيخرج مطالعها وفى عكسه اذا أريد تحويل المطالع الى السواء نضرب المطالع المعطاة فى ثلاثين و نقسم ما بلغ على مطالع ذلك البرج فيخرج درج السواء، وذلك بالتقريب و الجداول ادق منه ثم الحساب . فا ما المغارب فانها مطالع نظير البرج أو الدرجة و متى كانت المطالع معمولة و نقصت مطالع درجة الشمس من مطالع نظيرتها بقى يقى قوس نهارها، و أن نقصت مطالع نظيرتها من مطالع درجتها بقى قوس ليلها ، و هذه جداول مطالع البروج لعرض غزنة دار الملك موابلستان و هو ثلاث و ثبلا ثون جزءا و ثلث و رُبع جزؤ بحسب رصدنا ايّاه ، وهذا هو الجدول . ⁽١) ج : البروج . # مطالع البروج في عرض غزنة و هو - لج له | | <u>ડ</u> | مه | لج | ا كط | ځ | لو | كط | کج | ٤ | لج | ٥ | শ | | |----|----------|--------|-------|--------------|-----------|-----------|--------|-------|---------------------------------------|----------------|-----------|----------|--------| | | | زاء | الجو | | | ر | الثو | | · · · · · · · · · · · · · · · · · · · | لىمل
سىسىسى | <u>-1</u> | | السواء | | | ائے | يواني. | رقانع | ازمان | ثوالث | ثوانی | د قاعق | ازمان | ثوالث | ئوانى | د قائق | ازمان | درج | | | يو | يو | کح | مد | ا کح | ا ه | ع | 1 | ٤ | ۲ | لط | • | | | را | كط | كط | R | da | ید | يز | J | 5 | + | و | ٤ | ١ | ب | | | 4 | ا ب | ط | مو | ن | † | يد | کب | لد | ی | نز | . 1 | ح | | | ی | 0 | ط | مز | ی | न | يز | ک | ی | يو | لو | ب | د | | | ا کو | لد | ج | ع | ع | ند | ۴ | کج | ح | کد | 41 | ح | ٥ | | | ٢ | کح | نح | ع | یب | 40 | کد' | کد | ما | + | ند | ج | و | | | 4 | ن | نج ا | مط | لط | li | ۲ | کم | ۲ | مو | لج | د | ر ا | | | لط | مط | مط | ن | ا لز | <u>92</u> | بج | که | يا | } | بج | . 0 | ٦ | | | نه | مد | مه | نا | يو | نز | لز | 2 | 5 | 5 | نب | ٥ | ط | | | ř | لو | مب | نب | ٤ | نو | کب | كز | نب | 7 | A | و | ی | | | لب | 4: | لط | 3 | مه | بج | c | کح | 5 | يب | آو | j | یا | | 7 | <u>ا</u> | R | لز | ند | الم | مط | څ ؛ | کح | | do | ن | ز | یب | | | J | کد | ها | ؛
نه
: | ۲ | مه | لط | کط | مز | کج | J | ۲ | يج | | | ب | | الد | نو ; | | • | کو : | J | لو | : | . ی | ط | يد | | | نب | | بلج | نز | 5 | لز | : بيا | 1 | لح | نط | مط | ط | اله | | | يه | لد | X | خ | <u>'و</u> | کح | نط | K | K | 4i | کط | ی | يو | | | بر | • | | | | | | | | . ٤ | ۲) ب | ب : كه (| (۱) ب | | | | | نط | | | | | | | | | | |------|----|----|------|----|----|------|----|----|----|-----|----|----| | | | | س | · | | | | | , | 1. | | | | بج | 3 | لج | اسا | بح | يط | کب ا | لد | يب | طا | ل | يب | لط | | | | | سب ا | | | | | | | | | | | به | مط | al | سعج | j | کج | نط | لم | ح | ما | t | بج | K | | | | | سد | | | | | | | | | | | | | | سه | | | | | | | | | | | ما | له | مب | سو | كط | مط | كز | ځ | ج' | ها | ند | يه | کد | | مز | کو | مو | اسز | لد | 0 | ځ | لط | مط | مب | al | يو | 2 | | بط | ح | ن | سىح | لد | مد | ح | م | ٤ | 25 | ير: | يز | 2 | | ٥ | يد | ند | سط | بج | مط | نط | م | ی | ۲ | نط | یز | كز | | يه | مد | غ | ع | یز | يو | t | ما | لز | ج | لم | 3 | کح | | ج | لخ | ح | عب | لج | بح | بج | مب | | يب | کج | ط | كط | | نو ا | ند | ح | عج | لو | ط | ما | بج | يح | لج | ٥ | 4 | J | (۱) ب: لج (۲) ب: ن (۳) ب: نع · | | ~ الوال | | | | | | | - | | <u></u> | | | |------------|----------------|----------|-------|---------|---|----------|-----------|---------------|------------|------------|------------|----------| | 25 | لو . | | ما | | 3 | | لز | | کج
مالن | | لد | ج السواه | | l | ~ | | | | | |] | | | , | | <u>-</u> | | أوالث | ئو آنی | د قانق | ازمان | مُع الت | نو انی | رق من | ازمان | و الث | نوانی | دهانق | ازمان | رث | | | كز | 7 | ا قمه | 5 | ای | | | كج | کد | يد | عد | 1 | | كط | 5 | بج | أقو | بج | 7 | 2 | ق | ط | لو | 4 | 4 E | ب | | ; و | کج | 4. | قمر | :
ز | ا کب | ځ | قيا | ؛ ز | يط | | عو | ج | | لد | | j | | ید | . ب | li
 | قيب | پز | بج | لج | عز | د | | 25 | ز | يط | قن | مو | مو | ح | | ما | ځ | ^ | عح | 0 | | يب | بج | J | قنا | 7 | | يو | | اي | ند | مو | عط | و | | يب | لز | مب | قب | ا مج | भ | | | مه | بح | ئ ه | ف | ز | | يو | يه | ند | قنج | کح | ۲ | مب | قىز
- | 7. | يب | | فب | ح | | ح | ن | | قه | لج | نط | ند | قيح | ع | کد | | • | ط | | يز | کب | | | 1 | ن | ز | | | د ا | R | فد | ی | | . | ع | کح | قنز | بز | <u>ل</u> ــــــــــــــــــــــــــــــــــــ | <u> </u> | قكا |] | ب | ل | فه | يا | | ح | يح | <u> </u> | ق ح | نب | ب | ڂ | قىكب
- | | يو | لط | فو | یب | | يب | ما | t | قنط | کز | كب | | فكج | | مد | ع | فز | 3 | | لج | | ح | قدا | 767 | يزا | نط | | | 7 | 8 | قح | يد | | 8 | 실 | يد | قسب | . | \ \\ \.\. | بب | قسكو | | ' | ۲ | ص | يه | | مز | له | کہ | قتح | | مو | | فكد | _[| مه | 3 | صا
ا، | 92. | | مد | من | لو ا | قسد | مد | الح ا | نو ا | ق کح | لو ا | نب | <u>اط</u> | صب | يز | (۱) ب: نط(۲) ب: كر (۳) ب: كم. بح | | | | | | | | <u> </u> | | | | | | |----|------|----|------|----------|-----|----|----------|------|------------|-------------|----------|------------| | 1 | يو ١ | من | قسه | مح | يو | ن | قكط | مو [| نب | اط! | صح | ع | | 75 | ٥ | نط | قسوا | بج | \$ | ب | قلا | ع | مو | ن | صد | يط | | ز | ار | ی | قسح | یب | Į. | يه | قلب | لط | خ | | صو | 4 | | 25 | 41_ | 5 | قسط | م | £ | کح | قلح | من | ح | بج | صر ا | 5 | | ط | يط | لب | قع | <u>ج</u> | ع | م | قلد | نو | كح | 25 | صح | کب | | , | يط | | | | | | | | | | صط | | | 1 | ع | ند | قعب | لو | مو | • | قلج | د | مو | من | ق | کد | | J | ير: | ٥ | قعد | ل | ايا | يح | قلح | و | لخ | نط | اقا | لک | | لط | ید | بو | قعه | لط | لب | J | قلط | Y | لز | یا | قح | کو | | مد | ا | کز | فدو | 1 | ৳ | مب | قم | كز | مو | کج | قد | ک ز | | کد | ۲ | ٤ | قعز | د | ح | نه | قا | R | نو | له | ·
قـه | كح | | لب | د | مط | قىح | 3 | يو | j | قرح | مد | <u>'</u> و | بج | قو | كظ | | • | • | • | قط | لد | کج | يط | قد | لب | جُ | • | قح | ل | (۱) ب | ار. | | | لد | | | | | | | | | | |--------|--------|-------|-------|------|-------|-------|--------|-------|-------|-------------------|-------|-------| | | وس | القر | | | _ب | العقر | : | | ان | الميز | | السوا | | ثو الث | يو ابي | دقاني | ازمان | تواك | ثوانى | دقائق | ازمان | ثوالث | ثوانی | د آهايي
د هايي | ازمان | درج | | يو | بج | ل | ر نج | نو | بج | یب` | اريو | کح | 6 | ی | قفا | ١ | | لط | ٤ | کد | رندا | يو. | نه | د | ريح | لز | نه | 5 | قفب | ب | | | | | رند | | | | | | | | | | | کب | کب | ع | ر نو | اك | كز | كط | رك | کب | 4. | بج | قفد | د | | . ند. | 6 | • | ر نح | J | ع | ما | ر کا | J | مب | مد۲ | 4 23 | ٥ | | نو | . – | | ارتط | | · | | ` | | | | | | | يد | نز | کج | رس | مه | ï | • | ر کد ا | ند | ۴ | <u>بو</u> | قفح | ز | | ٥ | | ļ | ر سا | | i | | | 4 /4 | | | | | | É. | نو | مو | رسب | 실 | مد | K | ركو | ᅬ | مل | + | قص | ط | | 5 | یا | نح | رسج | يج | کب | مد . | رکز | 괴 | مط | مط | قصا | ی | | مب | يه | ط | رسه | يو | \ | نز | ركح | یج | نه | · | قصح | يا | | يد | ز | ٤١ | رسو | نب | بج | 1, | رل | بج | ج | بب | قصد | يب | | ⊹و | مز | J | رسز | بو ا | کو | کب | رلا | 41 | يب | كج | قصه | بج | | ج | ید | لما | ر سح | لد | و | al | رلب | يو. | کد | لب | قصو | ید | | مط | ز | ţ | رسط | نج | ز | مز | ر لج | او | لط | 40 | قصر | ط | | ده | کح | · · | رعا | لد | مو | | رله | 7 | ع | نو | قصح | يو | | طي | يه | يا | ر عب | لج | لز | یج : | راو | ځ | ع | ح | را | بر: | (۱) ب: نب (۲) ب: ند. (٥٩) ج (١) ب : نب (٢) ب : مو (٣) ب : كو (٤) ب : كع ٥ | · | | | | | | | | | | | | | |----------|--------------------------------------|-----------------|----------|-------|--------|--------|-------|-------------------|-------|------------------|-------|----------| | 7 | + | • | <u>ن</u> | يخ ا | لو | كط | کج | 1 | مه | بل | كط | | | | رت | الحو | | | لو | الد | | | ی | الجد | | لسواء | | ثوالث | ثوانی | ر ها من
ر ها | ازمان | ثوالث | ئوانى | د قائق |
ازمان | ثوالث | موانی | د فانق
د کانق | ازمان | 3 | | 1 | | • | | | | | | E | į. | ; | ر فز | | | کج | مو | بح | شما | ج | بج | ح | شيح | ٥ | 4. | 1 | ر فط | ب | | | | | | | | | | | | | رص | | | | | | | | | | | | | | رصا | | | | | | - | | | | : . | | | - | رصب | 1 | | | | | | | | | , , | t . | | | رصبح | | | 1 | | | | A | | | 1 | 5 5 5 Sec. 25 5 5 | | | رصد | | | 3 | | | | | | | | | | | رصه | | | | _ | _ | 3 | | | : | 1 1 | | 1 | | رصو | | | نج | ــــــــــــــــــــــــــــــــــــ | ځ | شمو | مب | لط
 | مط | شكد | كط | مو | \$ | ر صر | ی | | ع | 25 | كط | شمز | يز | ^ | لز | شكه | لز | نه | کو | رصح | یا | | نو | مو | ط | شمح | مد | لح | ð | شكو | ٥ | الط | کز | رصط | بب | | لو | نط | مط | شمح | كط | له | | شكز | | 4 | كز | ش | يج | | مط | د . | J | شمط | 3 | Y | • | شكح | 4 | مو | | - | ٦ï | | کب | • | ي | شن | ن | کہ | | شكح | | من | کو | شب | به
—— | | کد | t | مط | شن | • | S | | شكط | ٤ | • | کو | شج | يو | | بج | او | كط | اشنا | نب | ید | 실 | شل | نج | له | کد | شد | بر | (۱) ب: نا (۲) ب: نو (۳) **پ**: مو . | | | | | - | | | | | | | | - | | |---|-----|------|---------------|-----|----|----|----|-----|------|----|----|-----|----| | Ī | ظ | | | شنب | 1 | | _ | | | | | | | | | لط | بح | | شنب | | | i | | | | | 1 | | | | ح | يو. | | شنج | | | | (| | | 1 | • | | | | ^ | £ | j | شند | بد | ب | كب | شلج | کد | ح | ید | شح | R | | | ١ | یج ۔ | مو | شند | ب | بج | 9 | شلد | و | 4 | ی | شط | کب | | | نب | یج . | 2 | شنه | 4 | ز | li | شلد | • | ط | و | شي | کج | | | يط | کو | 8 | شنو | مط | يد | al | شله | 1 | ¥ | 1 | شيا | کد | | | | | | شنو | | | | | | | | l | | | | ti | بج | كج | شنز | ن | لط | ب | شلز | لد | ند | ن | شيب | کو | | | كزن | مط | ب | شنح | ی | بح | do | شلز | 40 | ie | مد | شيج | Ž | | I | كز | نج | L | شنح | 9 | ب | كط | شلح | K | لد | لح | شيد | كح | | | | | , | | | | | | | | | | | | | • | • | ٠ | شنط | ۴ | کو | ند | شلط | کد ا | ن | کد | شيو | J | (۱) ب: ځ (۲) ب: که (۳) ب: نز (٤) ب: کو (۵) ب: که (۱ و اما معرفة عروض البلدان من جهة فضل النهار فيها فامّا ان نقسم الظل المعكوس لميل درجة الشمس على جيب تعديل النهار حتى يخرج ظلّ تمام عرض البلد معكوسا، و امّا ان نضرب جيب تمام ميل الشمس في جيب تمام تعديل النهار و نقوس المجتمع و نلقيها من تسعين و نقسم على جيب ما يبقي مضروب جيب تمام ميل الشمس في جيب تعديل النهار فيخرج جيب عرض البلد . (۱) فاما العلة في عمل استخراج فضل المطالع الذي هو تعديل النهار وهي ان نسبة جيب اعني جيب: ٥ ز ، في الشكل المتقدم في بابه الى جيب: ٥ ج ، الربع كنسبة ظل : ح ز ، المعكوس الى ظل : د ج ، المعكوس و هذان الظلان هما لقوسي : ط ح ، ط د ، ظلاهما المستويان، و اما العلة في كون تعديل النهار على مقدار واحد لكل اربع درجات ميولها متساوية فلنفرض لها من الأفق قوسي : ٥ ح ، ٥ س متساويتين فكل و احدة من : ك ح ، م ح ، ك س ، م س ، برجا تاماً فيكون : م ح ، برج الحل و : ح ك ، برج السنبلة من اجل ان اول مطلع اولما هو مطلع اول الثور، و يكون : م س ، برج الميزان و : ك س ، برج الحل في الحوت و نخرج : ٥ ج ز ، فعلوم ان : م ٥، هو ما طلع مع برج الحل في البلد من الازمان و : م ز ، ما طلع معه منها في خط الاستوا، و : ٥ ز ، فضل ما بين المطالعين . ⁽١) ابتدا. شكل: ٩٤ (٢) ب ، ج : ط ح ز. (۱) و لمثله: كه ، مطالع السنلة فى البلد و: ك ز ، مطالعها فى خط الاستواء، و للسنبلة زيادة، و على هذا المثال الحال فى برجى الميزان و الحوت من اشتراك: ه ع ، الفضل بين مطالعيهما، وكل و احدة من نسبة جيب : ه ح ، الى جيب : ح ز ، و نسبة جيب : ه س ، الى جيب س ع ، هى كنسبة الجيبكله الى جيب تمام عرض البلد فى : ح ز ، ه س ع ، متساويان و تماماهماكذلك متساويان وكل و احدة من نسبة س ع ، متساويان و تماماهماكذلك متساويان وكل و احدة من نسبة 1 (in the last of جيب: زه الى جيب: ه ح ، و نسبة جيب: ع ه ، الى جيب: ه ص ، كنسبة جيب : ح ط ، تمام الميل الى جيب: ط د ، ع م عرض البلد ففضلا: زه ، ه ع ، متساويان، و هما الاربعة أبراج كما ذ كر نا . و اما علة نقصان هذا الفضل في الميل الشهالي و عكسه و فلنخرج له فلك البروج و هو: زه و و نقطة : ز ، منه نقطة : و وهي الاعتدال ١٥ الربيعي و ليكن منه كل و احدة من قسى : زح ، له : ه س ، ص و ، برجا و معلوم ان : زح ، برج الحمل و : له ، السنبلة و : ه س و الميزان و : ص و ، الحوت و نخرج دائرتي : ك ط س ، ن ط ص ، فتفصل من معدل النهار مطالع هذه الابراج في خط الاستواء و نخرج من كل ⁽١) ابتدا. شكل: ٥٠ . واحدة من نقطة ': ح ل س ص ، قوسا من دائرة عظمي متشابهة الوضع لافق: ٥ د ، اعنى يحيط مــع معدل النهار بزاوية كزاوية : ن ه ب ، فيحصل في النصف الشهالي فضلا: ي ك ، م ن ، و هما نقصا نان من: زك ، زن: مطالع خط الاستواء حتى يصيرا : اج ، ز د م ، مطالع البلد. ه و فى النصف الجنوبي يكون فضلا : ع ف أا ج ، زيادتان على : زع زج ، مطالع خط الاستوا. حتى يصبرا : زف ، ز ا ، مطالع البلد . و اما ما بعد ذلك من امر قوس النهار و الليل فهو شديد الظهور و اما معرفة عرض البلد مر. للعديل النهار فني الشكل المتقدم نسبة جيب: ه ز ، الى جيب: ه ج ، الربع كنسبة ظل: ح ز ، الى ظل: ١٠ زح، معكوسين، فد: دح، تمام عرض البلد معلوم و ايضا فان نسبة جيب: زج^١، تمام تعديل النهار الى جيب: زط، الربع كنسبة جيب: دح الى جيب : ح ط ، تمام الميل ، فه : دح ، معلوم ، و نسبة جيب : ح ه ، تمامه الى جيب: ه ز ، تعديل النهار كنسبة جيب: ح ط ، الى جيب : ط د ، عرض البلد فهو اذن معلوم . ⁽١) من ج ، ب و فو : نقطة (٢) ب ، ج : ع و (٢) ج : ٥ - (٤) ج ، ب : ذ - . الباب # الباب التاسع عشر في درجة طلوع الكواكب وغروبها اذا أردنا أن نعرف الدرجة التي تطلع معها الكوكب ذو العرض و التي تغرب معها استخرجنـا تعديل نهار الكوكب و مطالع بمره على وسط السهاء في خط الاستواء فانكان بعده عن معدل النهار شماليًا نقصنا ٥ تعديل نهاره من مطالع درجة عمره و انكان بعده جنو بيا زدنا تعديل نهاره على مطالع درجمة بمره فيحصل بعد الزيادة او النقصان مطالع درجة طلوعه في البلد فاذا قُوسناها فيها خرجت هذه الدرجة . و اما الدرجة التي تغرب معه فانا نعكس لها ما ذكرنا بان نزيد تعديل نهاره على مطالع درجة عمره أن كان بعده عن معدّل النهار ١٠ شماليا و ننقصه منها ان كان جنوبيا فتحصل مغارب درجة غروبه فی البلد٬ و نزيد عليهـا مائة و ثمانين درجة و نقوس المبلغ في مطالع البلد ثم ننفص من درج السواء التي تخرج من التّقويس ماكنا زدنا و هو مائة و ثمانون جزؤا فتبقى درجة الغروب . ولنقرر من حال ها تين الدرجيين ان الكوكب اذا عدم ١٥ العرض و فكان لذلك على منطقة البروج و افى الأفق و فلك نصف النهار مع درجته٬ و اذا تنحّی عنها بعرض له فی الشمال او الجنوبکان ما يوافق هاتين عدم الدائرتين معه غير درجته في الاكثر، و قد تقدم امر درجة الممرّ وكيفية اختلافها مع درجته و بتى امر الافق فان وقع قياسه الى المنطقة اختلف امره وافتنّ وذلك أنه في خط الاستواء و في البلاد التي لايفضل عرضها على الميل الأعظم و هي التي لا يدور قطب فلك البروج الشهالى فيها ظاهرا فوق الارض ربما طلع وغرب مع درجته٬ و ربما سبقها و ربما تخلُّف عنهـا و فى البلاد ذوات الظل ه الواحد يدوم على حال و احدة من سبق الكوكب درجته فى الطلوع اذا كان شمالى العرض وتخلفه عنها اذا كان جنوبى العرض و انعكاس ذلك في الغروب . (١) ولنفرض لتقرير ذلك أوضاعا أولها لحظ الاستواء فيه: ب حد، الافق و: ل ح ن، فلك البروج، و معلوم ان قطب الكل ١٠ يكون فيها عـــلي نقطة : د ، فندير عليها و ببعد الميل الاعظم دائرة : اع ج ص ، و هي التي عليها يدور قطب فلك البروج فاذا و افي احدى نقطتي : ع ص كان الافق حينئذ احدى الدوائر التي تحد العرض فيكمون الكوكب و درجته معاعلي الافق للطلوع و الغروب فاذا فارقهما صارت درجة الطلوع غير درجته و يكتني في التعريف بها فان درجة (01) ١٥ الغروب على قياسها و نهب ان قطب فلــك البروج حصل فوق الأرض على: ١٠ الذي هو غـا ية ارتفاعه و الكوكب الطالع و'قتلد : ص ۲۰ ك، الشالي و: س، الجنوبي فدرجة طلوعهما : - ونخرج (١) ابندا. شكل: ١٥ . قوسی: اكم ، ای س، فیكون: م، درجة كوكب: ك ، و قد تخلّفت عن درجة الطلوع بمقدار: م ح، و:ی، درجة كوكب: س، و قد سبقت درجة الطلوع بمقدار: ی ح، و هو اعظم سبقها. ثنم لنهب ان قطب فلك البروج و افى نقطة : ج ، عند موافىاة المنقلب الصينى فلك نصف النهار و طلع كوكبا : ك س ، ونخرج دائرتى ه عرضيهما فيكون : ه ، درجة كوكب : ك ، و قدد طلعت قبل درجمة الطلوع بمقدار : ه ح ، و تخلفت درجة كوكب : س ، بمقدار : م ح ، و قد تر بعت دائرة القطب بنقط : ا، ع ، ج ، ص ، . ١٠ (٥٢) (۱) و اما الوضع الثانى فليكن للبلاد ذوات الظلين الى نهاية الميل الاعظم وقد ارتفع القطب فيه بمقدار: د ط ، فيكون حال السبق و التخلف فيه على مثل ما فى الوضع الاول الاان نقطّتى: ع ص اللتين فيهما يبطل السبق و التخلف لايكونان على تربيع نقطة: ا ، بل تقربان من نقطة : ج ، و يتزايد هذا القرب الى ان يصير: زط ، مساويا لليل الأعظم فيما بين دائرة القطب الأفق و تتحدّ نقط: ص ، ع ، ج ، فاذا حصلت نقطة الانقلاب الصيني على فلك نصف النها ركانت درجتا الطلوع و الغروب درجة الكوكب ٢٠ فلك نصف النها ركانت درجتا الطلوع و الغروب درجة الكوكب ٢٠ ⁽١) ابتدا. شكل : ٥٠ . وذهب سبق الدرجة درجة الطلوع عن الكوكب الشالى وتخلفها عنها عن الجنوبي . " و اما الوضع الثالث فيكن للبلاد ذوات الظل الواحد و فيه يذهب اتحاد درجة الكوكب مع احدى درجتى الطلوع و الغروب اصلاو يتى السبق و التخلف على مثال ما فى الوضع الثانى . فهذه هي الحال عند القياس الى فلك البروج بعروض الكواكب فأما بالقياس الى معدل النهار بابعادها عنه فالقضية فيه و احدة و بالإضافة الى درجة الممرّ في الجنوبي و الشهالي مطّردة و للحاسب المتقدم فيه (۱) فليكن: ابج د، دائرة الافق و: ب ط د، فلك نصف النهار او: عجام معدل النهار على قطب: ط، وليطلع كوكب شمالي البعد عنه على نقطة: ه، فيرسم قوس نهاره: ه ز، وليمر على مطلعه و مغربه من دوائر الميول: م ط، ف ط، فيكون كل و احد من: ام ف ج، تعديل نهار الكوكب فليكن: ك س ح، فلك البروج فيكون: س، درجة الطلوع و: ا، منتهى مطالعها في البلد: و: ح، درجة الممرّ و: م، منتهى مطالعها في خط الاستواء و فضل ما بينها هو تعديل النهار فاذا نقصناه من: م، انتهينا الى: ا. ⁽١) ابتداء شكل: ٥٠٠ و بالتقويس في مطالع البلد تخرج درجة : س، ثم لنُدر هذا الكوكب حتى يوافى أفق المغرب على : ز ، فتصل نقطة : ك ، التي هي الاعتدال الربيعي عملي : ع ، و يصير فلك البروج : ع ص ل ، اماً : ص ، فهي آلَتَى فَى لمَا شَرَقَ : ح ، و منتهى مطالعها فى خط الاستواء : ف ، و اما : ل ، فهي درجة الغروب و منتهي مغاربها في البلد: ج ، و فضل ما بينهما: م ج ، ه تعديل النهار فاذا زدناه على مطالع درجة الممرّ في خط الاستوا. انتهينا الى : ج ، منتهى الغارب لكنها لا تكون موضوعة في جداول و ان اریدت فقد قلنـا ان کل برج فزمان غروبه فی زمان طلوع نظاره فطالع نظير كل برج هي مغاربه و اذا ابدل في جدول المطالع اسم كل برج باسم نظيره صارت المطالع مغارب مبتدئة من اول الميزان ١٠ و هو باسم الحمل فاذا زيد عـلى كل واحد مما فى الجدول نصف دور ابتدأت من اول الحمل و اذا العمل بالمطالع دون المغارب فان زيادة نصف الدور في العمل على: ج ، نحوله الى النظير و بتقويسه في مطالع البلد يخرج نظير درجة الغروب فلذلك ينقص منه مائه و ثمانين درجة ليبلغ درجة الغروب نفسها و ذلك : م ا ، اردنا ايضاحه . 10 # الباب العشرون في معرفة الماضي من النهار من قبَل ارتفاع الشمس وعكس ذلك -اذا عرفنا ارتفاع الشمس في وقت مّا و اردنا ان نعرف
بما ذار من ازمان قوس الهار من لدن طلعت فانا نستخرج تعديل نهار درجتها ه و جيبه و نحفظها ثم نقسم جيب ارتفاع الشمس على جيب تمام عرض البلد و ما خرج على جيب تمامميل درجة الشمس فيخرج الترتيب فان كان ميل الشمس جنوبيا جمعنا الترتيب الى جيب تعديل النهار وان كان ميل الشمس شهاليا اخذنا الفضل بينهما و نظرنا الفضل لايهها هو ثم قُوسنا الحاصل من المجموع او الفضل في جداول الجيوب فيكون قوس ١٠ التَّقُومُ فَأَنْ كَانَ الْمَيْلُ جَنُوبِيا أَوْكَانُ الْفَصْلُ لَجِيبُ تَعْدِيلُ النَّهَارِ الشَّهالى اخذنا الفضل بين تعديل النهار وبين قوس التقويم و ان كان الفضل للترتيب جمعنا قوس التقويم الى تعديل النهار و ان تساويا اخذنا تعديل النهار نفسه كما هو ثم نظرنا فانكان الارتفاع شرقيًّا كان ما حصل معنا هو ازمان الدوائر و ان كان الارتفاع غربيًا نقصنا الحاصل من قوس ١٥ النَّهار فيبقى الدائر و متى ضربناه في اربع دقائق خرج ما فيه من الساعات المستوية ودقائقها فان اردنا معوجبة قسمنا الدائر عبلي ازمان ساعات درجة الشمس فتخرج الساعات المعوجة وضربنا وماييق في ستين و قسمنا ما بلغ على ازمان الساعات ايضا فيخرج دقائقها و ما بعدها . و اما معرفة احد نوعي الساعات في الدائر من الآخر فانها اذا كانت كانت مستوية وضربت في خسة عشر ثم قسم المجتمع على ازمان ساعات الشَّمس تحوُّلت معوَّجة و أن كانت معوَّجة ثم ضربت في ازمانِ ساعات الشَّمس و قسَّم المبلغ على خمسة عِشر تحوَّلت مستوية . وفي عكس هذا العمل اذا كانت الساعات معلومة و أردنا ارتفاع الشمس للوقت ضربنا ه الساعات المستوية في خمسة عشر و المعوجة في ازمان ساعات الشمس حتى يتحوّل دائرًا فان كانت قبل نصف النهار استعملناه كما هو و ان كانت بعده استعملنا فضل ما بينه و بين قوس النهار، فان كان ميل الشمس جنوبيا زدنا على هذا المستعمل تعديل النهار وجعانا ما بلغ جيبا ونقصنا منه جيب تعديل النهار . و ان كان ميل الشمس شماليًا جعلنا الفضل بين المستعمل و بين تعديل النّهار جيبا فان كان الفضل للستعمل زدنا على هذا الجيب جيب-تعديل النهار ؛ و ان كان الفضل لتعديل النهار نقصنا هذا الجيب من جيب تعديل النهار و ضربنا ما حصل بعد الزيادة أو النقصان في جيب تمام عرض البلد فيجتمع جيب ارتفاع الشمس شرقياً قبل نصف النهار ١٥ و غربيًا بعده ' و لكن للبرهان عليه : ى ز د ، الافق على مركز : ٥ . وخط رُ نَصِفُ النَّهَـَارُ فَيْهُ: يَ هُ دُ ، وَ : زَ ، مطلع مدار الشَّمْسُ مُنْسَهُ وَ : زَ مُ ، ما دارت فيه من قوس النهار على مركز: ١، و: زح، الفصل المشترك بين سطحه و بين سطح الأفق و : س م ع ، مثلث الوقت و يخرج من: ا ⁽١) ابند ا. شكل: ٥٥ . قطرالمدار موازيا له: زح، وهو: ابج، فيمرّ من قطر المثلث على: ب، ويخرج عمود : زط على : اج ، فيكون جيب تعديل النهار في المدار و يساويه : م ع ، للوازاة و نسبة : م س ، جيب ارتفاع الشمس الى : م ع ، كنسبة جيب زاوية : م ع س ، التي بمقدار تمام عرض البلد الى جيب زاوية: م س ع ، القائمة ف: م ع ، معلوم لكنه مقدار: م ز ، و :م س ، مقدر بالمقدار الذي به نصف قطر مدار الشمس هو جیب تمام میله، و یجب ان یحول الی المقدار الذی به نصف قطر المدار هو الجيب كله و نسبة : م ع ، الخارج من القسمة الى جيب تمام ميل الشمس كنسبة: م ع ، المطلوب الى الجيب كله فد: م ع ، المسمى ترتيبا ١٠ معلوم و مطلوبنا هو : م ب ، جيب قوس : م ج ، المساة تقويما و حصوله في الصورة الأولى التي لليل الجنوبي يجمع : م ع ، ع ب ، و في الصورة الباقية التي لليل الشهالي تأخذ الفضل بينهما ءثم اذا حصلت قوس التقويم كان: زم ، الدائر في الصورة الاولى و الثانية فضل ما بين : مج ، التقويم : و: زج، لتعديل و في الصورة الباقية مجموعها ومعلوم انهما اذا تساويا ١٥ كان الدائر: جز٠٠ و اما عكس هذا العمل اذا طُلب الارتفاع من الساعات فان الدائر أر لباقي هو: زم ، فاذا أضيف اليه تعديل النهار في الأولى و أخذ فضل ما بينهما في سائر لصور حصل : ج م، و جيبه : ب م، و نأخذ فضل ما بينه و بين: بع ، جيب تعديل النهار في الاولى و الثانية وجمعهما في ٢٠ الباقية يحصل: مع، بالمقدار الذي به نصف قطر المدار الجيب كله فاذا ضرب في جيب تمام ميل الشمس تحوّل : م ع ، الى مقدار الجيب كله للدائرة العظمى، و نسبته كما تقدم الى : م س، جيب الارتفاع كنسبة جيب زاوية : س ، الى جيب زاوية : ح ، و أمر الساعات من الدائر وتحوّل احد النوعين الى الآخر بعد توسط ازمان الدائر بينهما ظاهر بحمد الله عزُّوجل. ## الياب الحادي والعشرون في معرفة الماضي من النهار من قبل سَمت الشمس أوعكسه اذا عرفنا بعد سمت الشمس عن خط الاعتدال في و قت ماً وأردنا معرفة مامضي من النهار الى ذلك الوقت ضربنا جيب تمام السّمت في ٥٠ جيب تمام عرض البلد فيجتمع المحفوظ الاول فنقوسه و نلقي قوسه من تسعين و نأخذ جيب ما يبتى و هو المحفوظ الشانى و نقسم عليه جيب السمت فيخرج جيب المطالع الوسطى، ثم نقسم جيب ميل الشمس على المحفوظ الثانى فما خرج نضربه في المحفوظ الأول ونقسم المجتمع على جيب تمام ميل الشمس فيخرج جيب التعديل، فان كان ميسل الشمس ١٠ جنوبيا نقصنا هذا التعديل من المطالع الوسطى وتما يتي تعديل النهار فيبق الدائر و ان كان سمت الشمس على خط الاعتدال كان المحفوظ الأول هو جيب تمام عرض البلد والمحفوظ الثاني جيب عرض البلد وكانت المطالع الوسطى هي التعديل نفسه فزدنا عليه تعديل النهار حتى بجتمع الدائر، و ان لم يكن للشمس ميل لم يكن لهـا ايضا تعديل نهار ١٥ وكانت المطالع الوسطى هي الدائرة . و أن كان ميلها شماليًا والسمت جنوبيا زدنا التّعديل و تعديل النهار معا على المطالع الوسطى فيجتمع الدائر٬ و ان كان الميل و السمت معا في الشمال نظرنا الى المطالع الوسطى فان سارت تعديل النهار كان التعديل هو الدائر و ان كانت أقل من تعديل النهار زدنا التعديل على فضل ⁽١) ج: الرأس. ما بينهما و أن كانت أكثر من تعديل النهار نقصنا فضل ما بينهما من التَّعديل فيحصلَ الدائر انكان السمت مأخوذًا من المشرق، و اما ان كان مأ خوذا من المغرب فالدائر في جميعها هو فضل ما بين الحاصل و بين قوس النهار ، و قد تقدم تصييره ساعات . و اما عكس هــــذا الباب اذا عرفِ الدائر من الازمان وأريد ه معرقة السَّمت فإنا تأخذ فضل ما بين الدائر من أوَّل النهار وبين نصف قوس النهار و تأخذ جيبه و سهمه فاما الجيب فانا نضربه في جيب تمام ميل الشمس ونحفظ المبلغ. و أما السهم فانا نلقيه من سهم نصف قوس النهار و نضرب الباقى في جيب تمام ميل الشمس ثم في جيب تمام عرض البلد و نقوس ما ١٠ يجتمع ونلقي قوسه مر. _ تسعين ونقسم المحفوظ على جيب ما يمتي فيخرج جيب نقوسه و نلقى قوسه من تسعين فيبقى جيب بعد السمت عن مطلع الاعتدال ان كان الدائر أقل من قوس نصف النهار وعن مغربه انكان الدائر أكثر من نصف قوس النهار . (١)و البرهان على العمل الأرل الذي لمعرفة الدائر من السمت: اب ١٥ ج د ، فلك نصف النهار و : ب ه د ، الأفق على قطب : س ، و : ا ه ج ، معدل النهار على قط : ط ، و ليكن الشمس على : ك ، و دائرة الارتفاع المارة عليها: س ك م ، فيكون: ه م ، بعد سمتها ، و دا ثرة الميل المــارة عليها : ط ك م ، فيكون : ك ع ، ميلها و المدار الذي يجرى عليه : ك ح ⁽١) ابتدا شكل: ٥٥ (١) ج: طاكع فیکون : ح ، مطلعها و یخرج : ط ح ل ، فیکون : ه ل ، تعدیل نهارها و المطلع الوسطى : ه ز ، و: زع ، تعديلها و ندير على قطب : ز ، و ببعد ضلع المربع دائرة : ص ط ف ، فكل و احدة من قوسى: ي ف ، ط ف، بمقدار تمام زاوية : ز ، وجيبها هو المحفوظ الاول، وقوس : ص ف ، ه بمقدار زاویة : ز ، و جیبها هو المحفوظ الثابی و نسبة جیب : ی ه ، تمام السمت الى جيب : ى ف كنسبة جيب هذا الربع الى جيب : دج ، تمام عرض البلد فجيب: ي ف ، المحفوظ الاول معلوم و جيب تمامه المحفوظ التَّاني أيضاً معلوم، و نسبته أعنى جيب: ص ف، الى جيب: ص ز ، الربع كنسبة ، جيب : ه م ، السمت الى جيب : ه ز ، المطالع ١٠ الوسطى فهي معلومة و نسبة جيب: ص ف المحفوظ الثاني الى جيب: فز الربع كنسبة جيب : ع ك ، الميلي الى جيب : ك ز ، و هو معلوم ونسبته الى جيب : ع ز ، تعديل المطالع كنسبة جيب : ك ط ، تمام الميل الى جيب : ط ف و المحفوظ الاول فالتعديل معلوم و المطالع المعدَّلة بـه : ه ع ، معلومة و الدائر مصححاً بتعديل النهار . ⁽١)ب ، ج : المطالع . هه) فالصورة الأولى لليل الجنوبي و الثانية لعدم السمت و الثالثه لعدم الميل و الباقية لليل الشهالي، اما الرابعة فللسمت الجنوبي، و اما الخامسة فللسَّمت الشهالي و تعديل النهار أعظم من المطالع الوسطى والساءسة للسمت الشهالى و تعديل النهار أصغرمنه. و أمَّا للعكس في معرفة السمت من الدائر فيان فصل ما بين الدائر و بين نصف قوس النهار هو بعد الشمس في المدار عن ملك نصف النهار ٥ (٢) و لنعدله بعض الصور المتقدمة التي استعمل فيها : م س ع ، مثلث ⁽١) ج ، ب: الثالثه (١) ابتدا شكل: ٥٦ . الوقت و : ط ك ح ، النهار و بخرج : م ج ، على موازاة : ع ح ، فيقطع : ج ح ، مساويا لـ: م ع ، و يكون : ط ج ، سهم البعد عن نصف النهار و معلوم أن جيب هذا البعد في المدار يساوى: ه ف الكُّنه بالمقدار الذي به نصف قطر المدار الجيبكلَّه فيجب ان محوَّل الى المقدار الذي ه به نصف قطر المدار جيب تمام ميله، و أذا حول كان هذا هو المحفوظ و نخرج : ه س ص ٬ الفصل المشترك لسطحي الافق و دائرة الارتفاع و عمود: ص ل، على: ا ه ، فيكون جيب السمت، و نحن اذا القينا: ط ج، سهم البعد من : طح ، سهم نصف قوس النهار ساوى الباقى : م ع ، و يجب ان يحول كما حول : ه ف، ثم يكونُ نسبته محولاً إلى : م س، ١٠ كنسبة جيب زاوية : س ، القائمة إلى جيب زاوية : ع ، تمام عرض البلد و: م س ، جيب ارتفاع الوقت و: ه س ، جيب تمامه فاذا صار معلوما كانت نسبته الى: ه ف: المحفوظ كنسبة : ص ه ؛ الجبب كله الى: ه ل ، جيب تمام السمت و هو معلوم، و ذلك ما اردناه . # الباب الثانى والعشرون فى معرفة الوقت من الليل بقياس الكواكب الثابتة إن الذّى تقدّم للشمس فى مثل هذا المعنى لم يختلف فى الايام الآمن قبل اختلاف ميول الآمن قبل اختلاف ميول مدارتها، وليس يباينها الكوكب العديم العرض فى شى من تلك الاعمال هالبتة للزومه المنطقة . و أما ذو العرض عنها فيختلف به درجات طلوعه و غروبه و توسطه السهاء حتى تغاير درجته و يحصل لبعضها من الميل ما يربى على الميـل الأعظم و يكون قوس نهاره بحسبه، فمتى أقيم بعد الكوكب عن معدل النهار مقام ميل درجة الشمس و استخرج به تعديل نهاره و سلك فيه ١٠ من ارتفاعه او سمته مثل ما تقدم في الشمس منهما حصل أزمان الدائر من لدن طلوعه الى وقت القياس وليسم دائرًا أوسط ، فاما الدائر المعدل و هو الذي من أوَّ ل الليل و طلوع الكوكب يكون ليلاَّ ويكون نهار آ، فتی کانت درجة طلوعه فیما بین درجة الشمس و بین نظیرتها کان طلوع الكوكب بالنهار ومتى كانت فيا بين نظير درجة الشمس الى ١٥ درجتها كان بالليل، و إن كان بالنهار القيت مطالع درجة طلوعه في اليلد من مطالع نظير درجة الشمس فيه و نقص ما يبتى من الدائر الأوسط فيقي الدائر المعدل، وإن كان بالليل القيت مطالع نظير الشمس في مطالع درجة طلوعه فيه، وزيد ما يبقى عملى الدائر الأوسط فيجتمع الدائر المعدُّل من اول الليل فحينئذ نحُّول الى ايُّ نوعي الساعات أريده، و من أجل أن في الكواكب الثابتة مايتأبُّد ظهوره في بعض المساكن ولا يكون له درجة طلوع و لا قوس نهار فضلا عن تعديله٬ و ربَّما وقع للقياس على مثله و لتحديد الوقت بارتفاعه . (١) فليكن: ١ ب ج د ، نصف فلك نصف النهار و: ١ د، خط الزوال و: ط ، قطب الكل ، و ليكن مدار أحد الكواكب التي من هذا الجنس: ب م ج ، و يصل المركز بالقبطب بخط : ه ى ط ، و يصل : ب ج ، و يخرجه الى ان يلقى خط الزوال على : ح ، و ينزل عمودى : ب ك ، ج ص ، فيحصل منها مثلث النهار لذلك الكوكب على نوعين أحدهما: ١٠ ب ك ح ، من أعظم ارتفاعيه في فلك نصف النهار أعنى: ج ب ، و جيبه : ب ك ، و الآخر: ج ص ح ، من أصغر إر تفاعيه فيه أعنى :د ج و جيبه : ج ص ، و نسبة كل و احد من هذين الجيبين الى قطر المثلث الذي هو فيه كنسبة جيب تمام عرض البلد الى الجيب كله كا
قلنا مراراً فكل و احد من : ب ح ، ج ح ، معلوم و : ه د ، نصف قطر ١٥ الدائرة هو جيب تمام ميل الكوكب فنفرض موضعه وقت قياس إرتفاعه: م ، وجيب الارتفاع : م س ، و مثلث الوقت : م س ع ، وهو معلوم الأضلاع، لأن نسبة : م س ، الى : م ع ، هي النسبة المذكورة في مثلث النهار، و يخرج : م ل ، على موازاة : ع ح ، فيكون : ب ح ، معلوما لانه يساوى: م غ ، و يبقى: ب ل ، معلوما لانه إما زيادة: ب ح ، على: ⁽۱) ابتدا. شکل : ۷د (۲) ب ، ج : دب . مع ، و إما أن : ج ل ، زيادة : م ع ، على : ج ح ، فيكون : ب ل ، فضل ما بين : ج ل ، و بين : ل ج ، ضعف جيب تمام ميل الكوكب لكن : ب ل ، سهم قوس : ب م ، التي بين الوقت و بين حصول الكواكب على فلك فصف النهار في المدار ، و نسبة : ب ل ، الى : ب ى ، على أن : ب ى ، جيب تمام ميل الكوكب كنسبة : ب ل ، الى : د ب ، ه على أن : ب ى ، جيب تمام ميل الكوكب كنسبة : ب ل ، الى : د ب ، ه على أن : ب ى ، الجيب كله ، فأ ذا حوّل الى هذا المقد ار عرف القوس على أن : ب ى ، الجيب كله ، فأ ذا حوّل الى هذا المقد ار عرف القوس من سهمهما و عرف الوقت بجانب الارتفاع ، و متى كان العمل بمثلث أصغر الارتفاعين حصل السهم : ج ل ، و القوس : ج م . #### فامًا حسابه المجرّد: وهو أن يحصل تمام بعدد الكوكب عن معدّل النهاد ثم ١٠ يوضع عرض البلد في مكانين وينقص تمام بعد الكوكب من احدهما، فيبق أصغر إرتفاعيه في فلك نصف النهاد ويزاد على الآخر فيجتمع أعظم إرتفاعيه منه فيؤخذ جيب الذي يزاد العمل به ويقسم على جيب تمام عرض البلد فيخرج قطر المثلث، وكذلك تفعل بحيب ارتفاعه في الوقت فيخرج الترتيب ويؤخذ فضل ما بينه و بين هذا القطر، ونقسم ١٥ على جيب تمام بعد الكوكب فيخرج سهم قوس تسمّى الحفوظة فان كان العمل باعظم إرتفاعي الكوكب كانت المحفوظة هي ما بين الوقت و بين موافاة السكوكب فلك نصف النهاد باقيا اليه إن كان إرتفاعه و بين موافاة السكوكب فلك نصف النهاد باقيا اليه إن كان إرتفاعه ^() **ب** : الكوكب . المقبس شرقيا و ماضيا منه إن كان غربيًا، وإن كان العمل بأصغرهما فالمحفوظة هي الماضي إن كان الارتفاع شرقيًا و الباقي إن كان الارتفاع غربيًا ، ثم يؤخذ مطالع درجة بمرّ الكوكب على وسط الساء في خط ه الاستواه ويزاد عليها القوس المحفوظة إن كانت للباضي وينقص المحفوظة منها انكانت للباقي فيحصل بعد الزيادة او النقصان مطالع درجة وسط الساء فى خطَّ الاستوا. وقت القياس ، و يزاد ١٠ عليهـا تسعون وينقص من المبلغ مطالع نظير درجة الشمس في البلد، فَيهِ الدَّائر مِن الْأَزْمَانَ مِن لَذَن أُولَ اللَّيلِ فَيحُولُ حَيِّئَذُ الى الساعات. ### الباب الثالث والعشرون في استخراج الأوتاد الاربعة للوقت المعلوم بالمطالع ألاوتاد الأربعة هي ما وا في أفق البلد و فلك نصف نهاره من فلك البروج٬ فالموا في أفق المشرق هو وتد الطالع و الموا في أفق المغرب هو وتد الغارب و الموا في فلك نصف النهار هو وتد وسط السهاء و الموافي ٥ فلك نصف الليل هو وتد الأرض، فاذا كانت درجة و سط الساء في البرج العاشر من برج الطالع سموا الاوتاد قائمة و إن كانت في البرج التاسع منه سَمُوها زائلة؛ و إن كانت في البرج الحادي عشر منه سمُّوها مائلة. و اذا تقرّر هذا من الصفة و التسمية ثم فرضت لنا ساعات ماضية ١٠ من النهار وكان موضع الشمس معلوما و أريد معرفة الطالع و باقى الاوتاد الثلاثة حولًا الساعات أزمانا فيضرب مستويتها في خمسة عشر و معوجتها في أزمان ساعات درجـة الشمس فيحصل الدائر فيها من الأزمان و نزيده على مطالع درجــة الشمس فى البلد فيجتمع مطالع درَجة الطالع فيه، و نقوَّسها في مطالع البلد فيخرج من درج السواء را درجة الطالع في برجه و نظيرتها درجة الغارب٬ ثم نزيد على مطالع درجة الطالع في البلد ما تتين و سبعين زمانًا، و نقوس المبلغ في مطالع خط الاستواء فتخرج درجة وسط الساء في برجها و نظيرتها درجة وتد الارض؛ فان لم تكن المطالع موضوعة الدرجات وكانت معمولة لبرج برج ⁽١) ب ، ج : حوانا (٢) ب ، ج : الشمس . حولنا ما سارت الشمس في برجها الى مطالعه فى البلد، و زدنا الدائر عليها ثم نقصنا من الجملة مطالع برج الشمس ان و فت بها ثم مطالع البرج الذى يليه، ثم الثالث منه الى ان ينتهى الى ما لا ينى بمطالع البرج فيكون هو الطالع و نحول البقية الى درج السواء فتكون درجا ته و إن كانت الساعات المعطاة للوقت ماضية من الليل ضربنا معوجتها فى أزمان ساعات ليل درجة الشمس وهى أزمان ساعات نهار نظير درجة الشمس، ثم أقنا هذا النظير مقام درجتها و فعلنا به ما كنا فعلنا بالنهار بها بعينه حتى تحصل المطالب . (۱) وليكن الأفق: به د ، و فلك نصف نهاره: ابج د ، و معدل النهار: اه ج ، على قطب: ط ، و: زك ح ، من فلك البروج فيكون: ز، درجة و سط السهاء و: ح ، درجة الطالع، و لتكن درجة الشمس: ك ، و ندير على قطب: ط ، و عليها مدار: م ك س ، فيكون الدائر من قوس نهارها: م ك ، و نخرج: ط م ل ، ط ك ص ، فيكون : ل ص ، الدائر في معدل النهار لمشابهته: ك م ، في المدار، و يخرج: ك ع ، على الدائر في معدل النهار لمشابهته: ك م ، في المدار، و يخرج: ك ع ، على وضع الافق اعنى أن يكون زاوية: ك ع ص ، مساوية لزاوية: م ه ل ، فيتساوى: ع ص ، ه ل ، و يصير الدائر لأجل ذلك: ع ه ، لكن : ف ع ، مطالع درجة الشمس في البلد لأن قوة: ك ع ، قوة: م ه ، فاذا زدنا: مطالع درجة الشمس في البلد لأن قوة : ك ع ، قوة : م ه ، فاذا زدنا: ع ه ، الدائر عليها اجتمع: ف ه ، لكن : ه ، طالعة مع : ح ، فبازاء: ف ه ، ن في الجدول و هي مطالع درجة الطالع : ع ، في السواء، و إذا ⁽۱) ابتداء شکل: ۸ه . من معدل النهار والافق و فلك نصف النهار دوائر عظمى ، فتقاطعها على الانصاف و لذلك تكون الدرجة الموافية افق المغرب نظيره : ح ، ، و ينهما نصف دور ، وكذلك الموافية فلك نصف الليل نظيره : ز ، و انما سميت البيوت التي هي الدرجات أوايل لها اوتادا لمعني صناعة احكام النجوم لأن اصحابها استدلوا بها على الثبات و المقام فاشتهرت لذلك بهذا الاسم . (١) ج: معلومة . الباب الرابع والعشرون في إستخراج الاوتاد بعرض اقلم الرؤية اذا عدمت مطالع البلد متى لم يكرب عندنا مطالع معمولة العرض بلدنا وأردنا معرفة درجات الأوتاد أخذنا فضل ما بين الماضي و بين نصف قوس النهار بالنهار و الليل بالليل و حولناه الى الا زمان ، فان كان الزمان الدائر للاضى أنقص من نصف قوس النهار اوالليل او نقصنا الدائر بالنهار من مطالع درجة الشمس في خط الاستواء و بالليل من مطالع نظير درجتها فيه، و ان كان الدائر زيد زيادة عليها فيحصل مطالع درجة وسط السهاء في خط الاستواء؛ فاذا قُوسنا ها فيها خرجت الدرجة؛ و قد قلنا ان نظيرتها ١٠ هي درجة وتد الارض ثم يحتسب بمطالع درجة وسط الساء في خط الاستواء درج سواء ونزيد عليها تسعين درجة ونأخذ ميل المبلغ وسمي ميل الرؤية و نعرف جهته ثم نضرب جيب تمامه في جيب تمام ارتفاع درجة و سط السماء على فلك نصف النهار فيخرج جيب عرض اقليم الرؤية ثم نقسم على جيب تمامه جيب ميل الرؤية و نضرب الخارج ١٥ •ن القسمة في جيب عرض اقليم الرؤية و نقسم المبلغ على جيب تمام ميل الرؤية فيخرج جيب القوس المحفوظة وينظر فانكان ميل الرؤية شماليًا زدنًا هذه القوس المحفوظة عسلى درجة و سط السهاء و انكان ميل الرؤية جنوبيًّا نقصنا القوس المحفوظة من درجة وسط السهاء ثم زدنًا على الحاصل بعد الزيادة او النقصان تسعين درجة فينتهي الى درجة الطالع و قتئذ فى بلدنا و نظيرتها هي درجة الغارب و قد حصلت الاوتاد الأربعة فنقدم امام التعليل امر عرض اقليم الرؤية ومعرفته على حده و: ا د ، هو قوس عظمى فيما بين سمت الرأس و بين فلك البروج قائمة عليه فانه نظير عرض البلد لأن هذه صفته مع معدل النهار و لذلك اشتركا في الاسم؛ ثم تميزا بالرؤية الموصوف بها فان اكثر ما تعلق امره بفلك ه البروج موصوف بالرؤية بسبب اختلاف المنظر واقتران زيادته ونقصانه بجانبي دائرة عرض اقليم الرؤية دون جانبي فلك نصف النهار . (١) فليكن: س، قطب: به د، و: زح، من فلك البروج، و ندير على قطب : ح ، التي هي درجة الطالع و يبعد ضلع المربع دائرة: م س ع ، و لامحالة أنها تقاطع فلك البروج على زوايا قائمة ف: س ك ، ، ، ، هو عرض اقليم الرؤية، و ذلك ان زاوية : اه ب ، هي بمقدار : ا ب تمام عرض البلد او الاقليم، و زاوية : ك ح م، بمقدار : ك م، تمام : س ك ، فشبه بعرض : س أ ، في التسمية ، و نصل ما بينهما بذكر الرؤية و انفصلاً في ذواتهها بتغير مقدار أحدهما و وضعه و ثبات الآخر و: س ك ، مساو لارتفاع قطب فلك البروج فى الوقت، وهذا ايضا من ١٥ اسباب تسميته بالعرض تشبيها بارتفاع قطب الكل المساوى لعرض البلد، وذلك أن من: ك الى قطب فلك البروج ربع دائرة ومن: س، الى : ع، مثله فيشترك بينهما تمام ارتفاع هذا القطب، فاذا ألقي بتي ارتفاعه مساويا لـ: س كـ؛ و ندير على قطب : ز ، و ببعد ضلع ⁽۱) ابتدا. شكل: ٥٥ (٢) ج: س ل (٣) ب ج: صل · المربع : ه ف ل، فيكون : ل، قطب فلك البروج، وكل واحد من: ه ي ، : ف ل ، يسمى ميل الرؤية و : ي ف ، تمامه، و متى زيد على : ا مطالع : ز ، ربع دائرة انتهى الى : ه ، فاذا أخذ ميله كان : ه ى ، القائم على : زح، و ارتفاع نصف نهار درجة : ز، هو : زب، ه وتمامه : زس، ونسبة جبيه الى جبب : س ك، المطلوب كنسبة جيب زاوية : ك ، القائمة الذي يساويه جيب : ز ف ، الربع الى جيب زاوية : ز ، اعنى جيب : ى ف ، تمام ميل الرؤية فـ : س ك ، عرض اقليم الرؤية معلوم • ا (١) ثم لنعد من هـذه الصورة ما يحتاج اليه وليكن: و س، نصف قوس نهار الشمس و هي من مدارها على : س، فيكون: س ن ، فضل ما بين: و ن ، و س ، الدائر و به يعلم: ا ، منتهى مطالع . ز ، في خطَّ الاستوام، و لأن كل واحد من : زى ، ك ح ، ربع فان : ⁽١) ابتداء شكل ٢٠. ى ح ، يبتى مساويا لـ: زك ، وكل واحد منهما هى القوس المحفوظة، و يخرج :ى ه ، ك م ، عـــلى استدارتهما الى نقطتى : ع ل ، فنسبة (1.) جيب: ل ص ، المساوى ل : ك م تمام عرض أقليم الرؤية الى جيب: ص ع ، المساوى ل : ه ى ، ميل الرؤية كنسبة جيب : ل م ، الربع الى جيب : م ب ، ف : م ب ، معلوم ، لكنه مساو ل : ه ح ، و نسبة جيب : ه ح ، الى جيب: حى، كنسبة جيب: ه ص، تمام ميل الرؤية الى جيب: صم، ١٠ عرض اقليم الرؤية: ف: حى، المحفوظة معلومة، و معلوم أن درجة: ح، اذا كانت شمالية كان ميل: هى، ايضا شهاليا، و وقعت نقطة: ك، من و سط السهاء الى جانب المشرق و انها اذا كانت جنوبية كانت سائر ما ذكرنا بالعكس . #### الباب الخامس و العشرون في تحويل الوقت والطالع من أفق آخر البلدان المطلوب نقل الوقت و الطالع من أفق احدهما الى أفق الآخر لايخلو أن في عرضيهما وطوليهما من الاتفاق في اجــدهما و الاختلاف في الآخر و الاختلاف في كليهها لأن الا تفاق فيهما معا ه ممتنع فأخذ نوعى القسم الاول ان يتفق عرضا البلدين و يختلف طولاهما فان كان ما يعطاه في غربيهما أخذنا أزمانَ ما بين الطولين و حصتها من الساعات فاما الساعات فانها يزاد عملي ساعات الوقت فيتحوّل من الغربي الى الشرقى، و اما الأزمان فانها تزاد على مطالع درجة الطالع المعطى في البلد ويقوس المبلغ فيها، فيخرج الطالع وقتئذ من أفق ١٠ البلد الشرقي . و أن كان ما يعطاه في غربيهما عكسنا الامر فنقصنا بدل الزيادة و النوع الآخر ان يتفق طولا البلدين ويختلف عرضاهما فيكون احدهما جنوبيا عن الآخر و الآخر شماليا عنه، فيجب ان يستخرج نصف قوس نهار ذلك اليوم في كليهما ، و نأخذ الفضل بينهما فان كان ما يعطاه في ١٥ جنو بيهما و الشمس شمالية الميل زدنا ساعات بالفضل على الساعات و ان كان ما يعطاه في شماليهما عكسنا الامر فنقصنا ساعات الفضل من الساعات اذا كانت الشمس شمالية الميل و زدناها عليها اذا كانت جنوبية . و أما نقل الطالع فهو بأن يؤخذ مطالع درجته في أحدهما اعني المعطى فيه و نقوس في مطالع الآخر المطلوب فيخرج درجة الطالع (77) فه ٬ و اما القسم الثاني و هو اختلافهما في الطول و العرض معاً فيجب أن يستخرج في البلد المعطى فيه الوقت درجة رسط السهاء، فإن كان غربًّا عن الآخر زيد على مطالعها في خطُّ الاستواء أزمان ما بين الطولين؛ و ان كان شرقيًا نقصت منها فتحصل مطالع درجة وسط
السهاء في الآخر بمطالع خطّ الاستواء، ثم يزاد عليها تسعون زمانا و نقوّس المبلغ ٥ في مطالعه بعد حفظه فتخرج درجة الطالع من أفقه، ثم تنقص مطالع درجة الشمس فيه بالنهار او مطالع نظير درجتها فيه بالليل من المحفوظ فيبق الدائر في ذلك البلد الآخر وتحويله الى نوعي الساعات كما تقدّم. و لتقرير ذلك بالتصورا نقول اما امتناع التساوى بين طولى البلدين مع تساوى عرضيهما فمن جهة أن ذلك يؤدّى فيهما الى موضع واحد من ١٠ الارض وكون البلدين فيه بالتحقيق موجب التركيب • ك الابدية الخطاء 10 البلد الادل ه الابدية الظهور إنق البلد الإخر ۲. (11) (٢) و اما العمل في النوع الاول من القسم الأول فليكن فيه أفق البلد الغربي : اب ج ، و فلك نصف نهاره: ك ه، طج ، و: دل م ، من معدل النهار على قطى: طك، و الدائرة الأبدية الظهور فيه : ج ف، ج: بالتصوير (۲) ابتداء شكل: ٦١. و الآبدية الحفاء : ص ب ، و المدار المارّ على سمت الرأس في البلدين : ه ز س، و سمت الشرقي منهما : ح، و فلك نصف نهاره : ك ح، ط ف، و أفقه : ص س ف، و لاتفاق العرضين يتساوى : ه ز ، ح س ، فيبقى بعد القاء المشترك : ٥ - ، مساويا لـ : ز س ، فما بين الطلوع فيهما مساو ه لما بين نصف النهار فيهما، و ليكن الدائر في البلد الغربي : زع، فيكون في الشرقي : ع س ، بزيادة : ز س ، المساوى لما بين الطولين كما أن الدائر في الشرقي الجرهو: ع س، و هو في الغرَّبي : ع ز، بنقصان : زس، ما بين الطولين ، فا ما بين مطالعي الطالعين من أفقيهما في وقت واحد فهو : ام، ويكتني بمطالع احدهما في الاستعال فان العرض واحد، ١٠ وامَّا المذكور في النوع الثاني منه فان البلدين المتَّفقي الطول لامحالة تحت فلك نصف نهمار واحد و اكثرهما عرضا شماليًا عن الآخر و أقلُّهما ع ضا جنوبيا عنه . (١) فليكن فلك نصف النهار المار عليها : ابج د ، و معدل النهار : اه ج ، و أفق أقلهما عرضا : ب ه د ، على قطب : س ، و أفق ١٥ أكثرهما عرضا : زهك ، على قطب : ح ، فبلد : ح ، شاتى عن : س ، و بلد : س ، جنوبی عن : ح ، و نفرض : ل م ص ، مدارا شالی المیل فنصف قوس نهاره فی بلد: س، هو: ل م، و فی بلد: ح، ل م ص، و فضل ما بينهما : م ص ، و لنفرض الدائر في بلد : س ، الجنوبي : م ع ، فيكون بلد : ح ، الشالى : ص ع ، بزيادة : م ص ، فضل ما بين نصفي ⁽١) ابتدار شكل : ١٢ (٢) ب، ج: ل ص قوس النهارين كما أن الدائر في الشهالي اذا كان: صع، فهو في الجنوبي: مع، بنقصان ذلك الفضل ثم لنفرض: طي، مدارا جنوبي الميل، فيكون فضل ما بين نصفي قوسي النهارين فيه لذينك البلدين: ي، فاذا كان الدائر في الجنوبي: ي، فاذا كان الدائر في الجنوبي: ي، وكان فى الشهالى ف: و، لنقصان الفضل على عكس الحال فى المدار الشهالى الميل، وجميع البلاد المتفقة الاطوال كم كانت فان آفاقها بأسرها تتقاطع على نقطة : ه، فلايختلف فيها طلوع نقطتى الاعتدالين و غروبهها كاختلاف ما سواهما . (۱) و اما القسم الثانى فليكن له : اب ج ، أفق بلد: س ، و فلك نصف نهاره : ط س ك ، و بلد آخر على : ح ، يخالفه فى الطول و العرض وأفقه : ا ص م ج ، و فلك نصف نهاره : ل ح م ، و معدّل النهار : ه ص ، وكما أن : س ح ، المسافة بينهما مركبة من الطول و العرض كذلك اختلاف الطلوع فيهما، و الغروب مركب من المجردين اللذين وصفنا و يتعذر تحصيله ، وللذلك نقصده من مأتى آخر و هو أن : ه ، فى بلد : س ، منتهى مطالع درجة وسط السهاء فى خط الاستواء، و اذا زيد عليه ربع دور انتهى الى : ب ، الذى هو منتهى مطالع درجة الطالع من أفق هـذا البلد ، (۱) ابتدا نكل : ٣ ، (۲) ج : مذين البدين . وكذلك: زن منتهى مطالع درجة وسط الساء فى بلد: حن و من مطالع خط الاستواء، و: ص، الذى على بعد ربع دور منه مطالع درجة الطالع من أفتى بلد: ح، فيما بين المطالعين البلديين: ص ب، وهي التي بها يختلف الوقت، و اذا ًقوس كل واحد منهما في مطالع بلده خرجت درجة الطالع فيه . بقدر الطولين، فاما الطالع فانه يختلف فيهما بالتقدم مرّة و التأخر اخرى بقدر الطولين، فاما الطالع فانه يختلف فيهما بالتقدم مرّة و التأخر اخرى الآعند نقطتى: اج، اعنى تقاطعى الافقين فاذا اتفق عليهما فلك البروج كان الطالع واحدا فى البلدين و ان بعدت بينهما الشقّة، و يخرج: حس، على استدارته الى: د، فتكون نقطتا التقاطع على تربيع: د، و نظيرتها، و اما معرفة نقطة: د، فهى بباب سمت القبلة اولى و تأخيرها اليه أصوب. ### الباب السادس والعشرون في صفة قبة الارض واستخراج طالعها اذا أردنا معرفة الطالع بقبة الارض من طالع بلد معلوم الطول و العرض أخذنا فضل ما بين طول البلد مأ خوذا من المغرب و بين تسعين، فإن كان طول البلد أقل من تسعين زدنا الفضل على مطالع ٥ درجة الطالع فيه و ان كان اكثر من تسعين نقصنا الفضل منها، ثم قوَّسنا الحاصل بعد ذلك في مطالع خطَّ الاستواء فيخرج من درج السواء درجة الطالع بالقبّة و فى عكسه اذا كان الطالع بالقبّة معلوماً و اردناه لبلد نقصنا الفضل المذكور من مطالع درجة الطالع بالقبة في خطُّ الاستواء ان كان طول البلد أقل من تسعين وزدناه عليها ان ١٠ كان اكثر، ثم قوَّسنا الحاصل في مطالع ذلك البلد فتخرج درجة الطالع فيه، و القبَّة اسم و ضعى أو قع على منتصف ما يلاصق الربع المسكون من خطُّ الاستواء . ﴿ (٢) فليكن لهذا الموضوع أفق البلد المفروض: اب ج د ، ومعدّل النهار : ج ا ك ، على قطب : ط ، و فلك نصف النهار : ب ه د ، و فلك ٢٥ البروج: حي، فيكون درجة الطالع: ط، و: ١، منتهى مطالعها في البلد، و ليكن طوله اولا أقل من تسعين فنفرض الفضل بينهما: ٥ ز ، و يخرج: ط ز، فيكون نصف نهار القبَّة ، و نقدُّر : زك، ربعا ونجيز عليه : طى ك ، من آفاق خط الاستواء فيكون : ى ، درجة الطالع بالقبة ، و: ك، ⁽١) ج: عليها (٢) ابتدا. شكل: ٦٤ (٣) من ج، ب و في و: و اكن . منتهى مطالعها في خطِّ الاستواء لكن كلِّ واحسد من : ١٠٠زك، ربع دائرة فيبتى: اك، مساويا له: ه ز، الذي هو فضل ما بين الطول! و بين التسعين٬ فا ذا زدناه على: ١٠ انتهينا الى : ك ، و نقوسه في مطالع خَطُّ الاستوا. يَكُونَ عَلَى أَفْقَ : طَـى كُـ، و: ب ه، يخرج: ي، طـالـعـ القبّة، ثم ليكن طول البلد أكثر من تسعين فيكون نصف نهار القبّة بحسبه: طل و زلم ربع كا أن : ه ا و ربع فيبقى : ل ه ، مساويا له : م ا ، فا ذا نقِصنا الفضل من: ١٠ منتهي مطالع الطالع في البلد انتهينا الي : م ، مطالع طالع القبَّة و تقويسها على أفق خطَّ الاستواء يخرج: س ، درجة الطالع وعكس العمل من هذه ظاهر . فا ما هذه القبُّة فيوهم اسمها أنها ارفع موضع في الارض و ان سائر المواضع منخفضة عنه الآأن من تحقّق ان مركز العالم هو حقيقة السفل و ان الا ثقال تنزع اليه يعلم ان كل مسكن على العرض وهو علو لساكنه حتى اذا تساوت ابعادوجهالارضعن المركز ١٥ لم يكن فيه موضع بالعلو او لي من الآخر الّا ان يكون الاعتلاء بحال 🤝 قسرى خارج عن الطبيعي كذُرَى الجبال بالقياس الي ⁽١) ج: الطولين (٢) ج، ب وفي و: اوقع سفوحها او حضيضها او صناعى كرؤوس المنارات ، و الأهرام باعتبار اصولها ، فيجب ان يعلم من امر القبة ان انبساط العارة فى طول الربع المسكون وجد فى نصف دور بالتقريب و صار ذلك كالمتفق عليه ، و لكن اليونانيين ابتدؤا فيه من ناحيتهم لأنهم مسحوا الاطوال من جانبهم ثم اختلفوا فى المبدأ فمنهم من ابتدأ بها من ساحل بحر أوقيانوس المحيط ه و به طول بابل المصاقب لبغداذ سبعون زمانا و بطليوس ابتدأ بها من الجزائر الخالدات وهى موغلة فى البحر بعيدة عن الساحل بعشرة أزمان و بذلك يكون طول بابل ثمانين زمانا . واذا اختلفت المبدأ من جهة المغرب مع حصول الاجماع في طول العمران على نصف الدور وجب منه اختلاف المنتهى و لم يحصل ١٠ من ذلك عندنا ما يجلب الثقة و ليس من مذهب بطلبيوس و لا قومه ذكر القبية و انماهى موجودة من جهة الفرس، و حساباتهم منقولة من كتب الهند و هى اولى بان تحكى ما فيها، و الذى و جدنا فى كتبهم التي هى من هذه الصناعة فى الدرجة العليا عندهم هو ان عملي طرف العارة فى الشرق موضعا يسمى جمكوت و على غربها الروم و فى وسطها ١٥ على خط الاستواء قلعة لنك فى جزيرة هى مستقر الشياطين، و وصف من ارتفاعها فى الجو ما يجوز ان يشبه بالقبة و هى التى تحصن فيها راون من رام على ما هو مذكور فى اخبار رام و رامائن، و زعموا ان تحت من رام على ما هو مذكور فى اخبار رام و رامائن، و زعموا ان تحت على الخط الواصل بين القلعة و بين الجبل مدينة اوزين و قلعة روهيتك ٢٠ على الخط الواصل بين القلعة و بين الجبل مدينة اوزين و قلعة روهيتك ٢٠ ⁽۱) واجع معجم البلدان لياقوت الحموى ج - ۲ ص - ٩٤ (۲) راجع كناب الهند للبيروني ص - ١٥٨ ، ١٥٩ وترجته الانكليسية ج - ١ ص - ٢٠٩ الى ٢٠٠٠ -ج ۱ و برية تانيشر٬ والجبال المثلجة التي يتصل من كشمير بارض الترك، فاما مدينة اوزين فهي التي يذكرونه في حساب او ساط الكواكب من ادوارها و الشمس يسا متها في المنقلب الصيني و هي جنوبية عن المولتان في حدود ما لوا؟ التي قصبته بلد دهار؟ وبينه و بين اوزين مرحلة؛ ٥ ومن المنصورة الى اوزين اكثر من مائة فرسخ نحو المشرق، وليس يتصل امره باحد الرأيين المذكورين عن اليونانيين في المبدأ، وذلك ان نهاية ربع الدور من عند الجزائر الخالدات يقع عن غرب نيسا بور بقريب من ثلاثين فرسخا وليس في جنوبها الآمدن فارس و الأهواز. و اما نهایة الربع من عند الساحل فانه یقع قریبا من سجستان و من ١٠ قصد ارض السند منها لم يلزم في مسيره خطّ نصف النهار بل ينحرف عنه الى المشرق كثيرا إلى ان يوا في بلد المنصورة، ثم المسافة بعد ذلك الى مدينة اوزين شرقية في اكثر الامر، والتسعون بكلا الرأيين بعيدة عن الخط الذي عليه اوزين ويفضى الى القبة المساة لنك و ان كل الرأى المأخوذ من الساحل اليها اقرب . تّم الجزء الأوّل 10 المشتمل على المقالات الأربع اللهوك من القانون المسعودى لا بي الريحان البيروني و يتلوه الجزؤ الثاني أوّلهُ المقالة الحامسة ⁽۱) راجع كتاب الهند للبيروني ص ٥٦ وترجمته الانكليسية ج ١ص١٧٧ (٢) راجع الاول ص ـ ٩٩، والثاني ج ١ ص - ١٧٧ . ح ١ ص - ١٧٧ . ### CORRIGENDA First page 1. 4 read l. 26 ivdelete 'to' between the Buwaihids & semi-independent. l. 22 had set up viviil. g immediately l. 4 **Mathematics** viiidelete "?" ix1. 25 1. 9 Substitute al-Biruni's for 'his' xi1. 3 xiirespecter l. 5 pointed l. 19 forms l. 12 xviisame I swear by my life......to resolve or contradict. xviii l. 7-9 Last line prevalent xix من & القدما . bet. من & xxi شكل الساء l. I xxii read so much, and in 1. 23 substitute a full stop and xxiii l. 14 capital P in perhaps الصنعة & الاتقان . bet. الصنعة & xxivl. 4 أنتظام & التقدير .bet الف & xxvii 1.8 19 to 23 رسالة الفهرست للبيروني طبع باريس (ص ٣٣) xxixl. 13 the source of the Nile in the Mountains of the Moon 1. 16 xxxi 11. 30° (instead of 11. 35°.) xli1. 17 المتحدين lxi 1.8 myself, I am further indebted to him for furnishing me with the instalments of the book in the course of its printing, suggesting some excellent formal and verbal modifications in the typed copy of my article and eventually relieving me to a large extent in correcting its proofs for the press. And above all I thank God that I have been able to complete this work which I had undertaken as a labour of love in honour of an author whom I have always considered as one of the greatest and best that the world has produced or would produce in the future. For as we know more and more of his works we are bound with the passage of time to bestow on him still greater honours that are reserved only for the *elite* of our human race. Hasan Manzil, Bulandshahr, U.P., Friday, the 15th June, 1956 Syed Hasan Barani and tackle similar difficulties in the manuscripts. And, moreover, even the best Mathematicians commit mistakes in their calculations and we know that al-Bīrūnī was no exception.
See, for instance, the various corrections of this kind that the learned editor and translator of the *Indica* had to make in his English notes with the help of a great Mathematician of his times. Some other valuable works of al-Bīrūnī exist in good manuscripts and deserve early publication. To one of these, I would particularly draw attention here. It is the autograph, or at least a contemporaneous copy of al-Bīrūnī's Kitābu't-Taḥdīd, dated A.H. 416, which in my opinion should be published in photographs, for it would serve as a beautiful palaeographical souvenir of the early 5th century of the Muslim era. I am really very much indebted to the learned Director of the Daira and the Chief-Editor of al-Qānūn for procuring for me its microfilm from the Fateh Library in Istanbul. The work by itself constitutes one of the smaller masterpieces of al-Bīrūnī, written soon after his arrival at Ghaznah in A.H. 410, i.e., after his release from detention in the fort of Nandna. Another minor work of special interest is al-Isti'āb on Astrolabes, which exists in several good manuscripts in Iran and other countries. These and all other available works of al-Bīrūnī may, one after the other, be taken up by the Daira under the care of its present Director, Dr. M. Nizāmu'd-Dīn, whose knowledge and experience are only equalled by his love of learning, specially where the East is concerned. As for nothing came out of those labours, except the preparation of a transcript from the beautiful and precious ¹)manuscript of A.H. 562, then belonging to the Imperial Library, Calcutta, and the careful comparison with the photostat of the oldest, ¹) [Or. 516 Bodl.] but incomplete manuscript in Oxford, and a much more recent copy which originally belonged to Syed Maḥmūd, the illustrious scion of Sir Syed Aḥmed Khān, the founder of that famous institution. The transcript then prepared and some abortive attempts at its translation in Urdu, should still be in the keeping of the University Library. The Dāiratu'l-Ma'ārif-il-Osmania at Hyderabad-Dn deserves to be congratulated for bringing out a standard edition of the whole text, which, I hope, should serve as a basis for all the future researches relating to this book. A word of caution is, however, necessary to add here for the benefit of those who would like to undertake the study of the parts or the whole of al-Qānūn or even a single topic therefrom. They should as a rule compare the text of the printed parts of this edition with some of the best available 1) manuscripts, and go even a step further to check the results, for in a work like this where the author has generally resorted to the system of numeration by means of the Arabic letters, and very sparingly by the Indian numerals, no text of such a big magnitude, full of innumerable minutae, can, inspite of the care bestowed by its editors, remain totally immune from errors and misprints. In his times al-Bīrūnī himself had to face ¹⁾ See supra for descriptions "Conspectus of the Extant Mss of the Qanun" p. 14 lxxiii there is no doubt that in some parts, like the Solar and Lunar theories and the Eclipses, they had worked independently and even surpassed the Greek Astronomers. On the other hand it would be worth-while, although not so easy, except by indirect reasoning, to trace the influence that his own works in Sanskrit exerted on the contemporary or subsequent Indian Astronomy. For, while seeking enlightenment from the Indian sources, he on his part loved to pay back his debt by introducing the Indians to the principles of Muslim Astronomy at its best period. If al-Birūnī was lucky in his life in having some enlightened and even learned patrons, he is no less lucky now after his death in having an illustrious patron of his works in Maulānā Abu'l-Kalām Azād, to whose worthy name the present edition of the book has been rightly dedicated. For I know from my personal experience the unlimited admiration he has got for al-Bīrūnī and his works and even found time during his busy life as the Education Minister of India to contribute some appreciative articles of his own on al-Bīrūnī. The publication of this marvellous work would indeed be an event in the field of scientific studies. It was the ambition of many savants and learned bodies to bring out a complete edition of this book. More than 40 years ago, when I published the First edition of my "Life of al-Bīrūnī," in Urdu and some 12 years after, its Second edition, M.A.O. College, Aligarh was hoping to bring out the text and translation of al-Qānūn. But unfortunately works and in his opinion, were indispensible to enable the scholars to judge and check the results. For in a growing science like Astronomy it is well nigh impossible to overlook the work done by the former scholars. So he gratefully benefited himself by the previous researches and theories, but freely and fearlessly criticised where he thought they had missed the mark or gone astray. The whole passage on pages 4 and 5 is a true exposition of his scientific method, consistently pursued in all his works. He had already written very extensively to furnish the missing proofs for the researches of the leading Astronomers like al-Khwārazmī, Ḥabash, al-Farghānī and Abū-Ma'shar, and the Indian compilers of the Siddhantas, Karana-Khand-Khandayaka etc. (cf. his al-Fihrist, pp. 30,32 & 43). His firm belief in the laws of nature, his insistence on continuous observations and collection of reliable data and the successful application of all these principles, mark him out as one of the greatest exponents of the true scientific method. Another important aspect of this work needs emphasis. During the five or six years that had elapsed after the completion of his *Indica* in A.H. 422, al-Bīrūnī had gone further ahead with his Indian studies. His most exhaustive work of 1100 pages exclusively devoted to the Indian Astronomy:— is apparently lost. It would, therefore, be necessary to elucidate his special debt to the Indian Astronomers, for was passing through the press. I, therefore, earnestly beg my readers to overlook its imperfections and shortcomings. However, I hope, in the words of Ibn Sina in the preface of his *al-Qānūn* on Medicine:— و ان آخر الله فى الاجل و ساعد القدر انتصبت انتصابا ثانيا . to renew in the near future my labour on a much larger scale, if God spares me life and good luck favours me to do so. After its publication the most important thing in my opinion would be al- $Q\bar{a}n\bar{u}n$'s translation and annotation in some modern language of international status on the lines of the great Italian savant C. Nallino's unrivalled performance in the Latin language in connection with al-Battānī's work. In al-Bīrūnī's case a still wider knowledge of the sciences, languages and history would be necessary, besides the fact that he is rather a difficult writer who, while on his part does everything to furnish the required proofs, demands at the same time an extremely careful and exacting devotion to his work, specially in this one intended for the most advanced scholars. This brings us to some of the most distinguishing and original features of this work mentioned by the author himself towards the end of his Preface, i.e., the particular care he has taken to unravel the basic principles, to demonstrate the propositions enunciated in the book, to adduce the proofs of his deductions and to indicate his personal observations and researches. These features, says al-Bīrūnī, were very much lacking in his predecessor's and even the *Qura'n* is silent on this particular point. The Indian system of periodic revolutions of the heavenly bodies is full of inconsistencies and rests merely on the ancient traditions. The same is true of the theory of conjunction of all the heavenly bodies in the beginning, and previous to all the subsequent events in the Universe. He, therefore, rejects all such speculations one by one and contents himself in the end to narrate what the Iranians and Indians had to say on this subject:— #### CONCLUDING REMARKS In a work of such vast dimensions and rich contents it is not easy to pick and chose. I do not claim to have exhausted or even copiously utilised the inexhaustible store of materials in this work. My main idea has been to demonstrate the value of this book even to a layman. I have, therefore, avoided the more complicated or technical matters which I thought belong to the domain of a highly specialised scholar. I, however, believe that the best course for any one would be to select a limited theme at one time and work on it in a detailed and exhaustive manner, e.g., by taking up the Prolegomena dealing with the first principles, or anyone of the subsequent parts relating to Chronology and Calendar, Geography, the Solar, Lunar or Planetary theories, the stars and so forth. The space and time at my disposal have permitted me only a very brief treatment of the themes chosen for this study, which was being carried out the same time that the book Ptolemy and the Indian Siddhantas. "This," says al-Bīrūnī, "I mention to warn you against the ravings and patchings of these Astrologers on account of their love of the number '12' in respect of the conjunctions". These Astrologers were, of course, extremely displeased by his criticism of their favourite theory, but, as rightly remarked by al-Bīrūnī, 'truth does not follow our wishes.' The last chapter deals with the Millenia and other Astrological periods. Here he has offered some very pungent remarks, which are, perhaps, equally applicable to our times, in which there is no dearth of hypothesis relating to the beginning of our universe and its other component parts. He makes no secret of his views that the Iranian and Indian systems of calculating the beginnings of the Universe, the Earth and the Human race and assigning them cycles of thousands or other specified periods, are all uncertain guesses, based on no demonstrable data. On the other hand he believes that such
beginnings are altogether unknown and the human reason is incapable of precisely determining or describing such events. Traditional lore and religious books differ hopelessly lxviii were too difficult and complicated to find place in the earlier and more elementry book, at-Tafhīm, which is very much suited for those who are interested in Astrology as a profession. But you could never know his greatness even as a perfect master of Astrology, unless you have studied his last Maqala, wherein he has undertaken to enunciate the universally admitted bases on which was raised the enormous structure of Astrological practices. We sample out here two themes of general interest forming the subject-matter of the last chapters of the book. The first deals with the theory of the Qirans (it is), the conjunction of the Planets, an idea which had originated in the land of ancient Iran. The Astrologers set a great store by this theory, which, they claimed, helped them in predicting important public events and careers of men born under such conjunctions. Of these, the conjunction of Saturn and Jupiter were considered as the most auspicious. The Qirans were of three kinds, the smallest (الأصغر) the middle (الأوسط) and the largest (الأعظم); the first was supposed to take place at the end of twenty years, the second, more in use, 240 years and the third 960 years. al-Bīrūnī points out that even according to the works of the ancient Persian Astronomers, who carried out their calculations on the basis of 360 days for a year, the first should take place, not in 20 years, but in 19 years, 3 months and 26 days, and even much less, according to the solar year of more than 365 days, as calculated by thinkers to connect the events of the world with the Astronomical propositions and thereby establish the influence of the heavenly bodies in a delusive manner, and thus devise the bases for the principles governing the forecast of the future occurences and persuade the people to accept Astrology as the very fruit (of Astronomical science). This those thinkers did to gain their following, knowing that the masses are greedy to learn the means whereby they can derive benefit, avoid harm, ward off disgrace and avert biting calamities". From a personal anecdote in his al-Fihrist we learn that at the time of his serious illness in A.H. 422 he consulted the Astrologers to find out the remaining years of his life, but, to his utter disappointment, they hopelessly differed amongst themselves and produced altogether conflicting and even impossible results (p. 41). It is, however, very curious that in subsequent times he was rated as the greatest Muslim Astrologer and some evidently false anecdotes, like those in the Persian work Chahar Maqalah, (written in the middle of the 6th. century), were invented to show his greatness as a most wonderful Astrologer. I do not propose to enter here into further details of the various topics relating to the calculation of the 12 celestial domus (يوت), the juxtaposition with reference to the signs of the Zodiac, the contiguity of the planets in their longitudes and latitudes, the casting of horoscopes, the ascension, and declension of the planets and the passage of one planet over the other etc. These matters ignorance of the people. It also appears that he did not consider most of them as even fully informed in their difficult subject and warns the people to be on their guard against their sharp practices (p. 360). اصل این حدیث و سستی مقدمات این صناعت و آشفتگی قیاسهایش، و اما حشویان منجهان که تمویه و زرق دوست تر دارند از راه راست. He had a special book on this topic called كتاب التنبيه على صناعة التمويه . In his $Kit\bar{a}bu't$ - $Tahd\bar{a}d$ (p. 324), he pronounces a similar verdict against the whole system itself. فانّ صناعة الاحكام على وهي اصولها وضعف فروعها، و اختلاف قياساتها، وغلبة الظنّ فيها على اليقين . "The system of predictions in Astrology rests on totally absurd principles, weak deductions, contradictory guesses and merest assumptions, opposed to certainties". It is, therefore, certain that, like his illustrious contemporary and friend Ibn Sina, al-Bīrūnī was totally opposed to Alchemy and Astrology. The most eloquent testimony of the views on the latter is, however, available in the opening passage (p. 1354) of the last Maqala where al-Bīrūnī says:- "This science (of Astronomy) to which this book is devoted is absolutely self-sufficient in its own excellent principles. But the heart of those people, who cannot conceive of any joy except in the things that can save them from bodily pain, and of any gain except in the wordly boons, are not attracted and are even inimical to it and its votaries. This was the reason that led the ancient Astrology and wrote a number of times on it. The titles of his books in this particular line may be gleaned from his own list of A.H. 427. Kitābu't-Tafhīm, (extant both in the Arabic and Persian versions), is the best surviving work, the latter half of which is devoted to Astrology, while his Tamhīdu'l-Mustaqarr, published by the Daira, deals exclusively with a single topic of Astrological import called mamarr, i.e., the passage of one Planet over the other, which also forms in a brief manner the subject matter of Chapter X of the last Maqala. In al-Qanan, al-Bīrūnī confines himself to the methods of Spherical Trigonometry and Mathematics, deemed indispensible for determining the movements and relative positions of the heavenly bodies, on which are based all the results of Astrological import. In this limited range also he claims several new methods of his own. Of all the Muslim Astronomers his attitude to Astrology is most clear and definite. He repeats his views again and again in his various books. The last section of at-Tafhīm pertaining to Astrology opens with the remark that for most people it is the highest product of the whole Mathematical science. He, however, ranges himself with the minority—i.e., those who do not hold this opinion (p. 316). و نزدیك بیشتر مردمان احکام نجوم ثمره علمهام ریاضی است. هرچند که اعتقاد ما اندرین ثمره و اندریر صناعت مانند اعتقاد کمترین مردمان است . In other places in the same book he is very hard upon those who practised Astrology and preyed on the at least one of them, al-Lam'āt, was known and utilised in our country by the author of the Jāmī'-i-Bahādur Khānī, an Encyclopaedia of Mathematics, produced in the beginning of the last century. # AL-BĪRŪNĪ AND THE THEORY AND PRACTICE OF ASTROLOGY In al-Bīrūnī's time Astrology, already a fully developed system, had a strong hold on people's mind. Muslim theologians and philosophers were generally opposed to its claims, but the Astronomers commonly supported its theory and adopted its practice as part and parcel of their profession. Many Muslim rulers believed in its efficiency and patronized their Astronomers equally for their knowledge of Astrology. So generally speaking both Astronomy and Astrology went hand in hand in those days. The Mulims, however, enriched their system of Astrology by combining and harmonizing the various elements derived from the Iranian, Indian, Greek and other sources. This is not a place to write the interesting history of Astrology amongst the Muslims or in the Medieval Europe, which borrowed its entire system from the former. Only one point needs stressing. The Muslims appear to have taken Astrology rather seriously and almost in a scientific spirit and given it a respectable form, by pressing in its service their knowledge of Spherical Trigonometry and Mathematics. In their hands it thus became a highly complicated and technical system. There is absolutely no doubt that al-Bīrūnī was thoroughly versed in the theoretical and practical aspects of times come to be true. Ptolemy and other Astronomers did not concern themselves with any theory about the Moon's appearance. But the Muslim Astronomers like al-Fazārī, Ya'qūb b. Ṭāriq, and al-Khwārazmī on the one hand and Ḥabash-ul-Ḥāsib and al-Battānī on the other made it a subject of their special study and devised laws concerning the appearance of the New Moon. al-Bīrūrnī has relied on the researches of Ḥabash, which he says were the best on this subject. ### DAWN AND SUNSET This subject enjoyed sufficient importance with the Muslim scientists, as the two phenomena helped in determining the times for some prayers, and fasting. We know that the greatest Muslim writer on Optics, Ibn-ul-Haitham, determined that the twilight begins or ceases when the sun is 10 degrees below the horizon, and attempted thereby also to measure the height of the atmosphere. In Chapter XIII of the VIII Magala al-Bīrūnī deals with the subject, and it is remarkable that he was cognizant of still better results, for he informs us that both these phenomena occured when the Sun was 18 degrees below the horizon. He adds that some people determined it as 17 degrees. The former result corresponds exactly with the best modern researches. Evidently both the results, slightly different from Ibn-ul-Haitham's, are based on independent researches. We know that Optics was one of al-Bīrūnī's favourite subjects in which he left some original researches of his own. It is a pity that none of his books on this subject are available now, although except two topics, one relating to the appearance of the New Moon, and the other, in the last chapter, relating to the Indian theories of eclipses called Khayalai-ul-Kusufain, "the images of the eclipses" which pass on the faces of the Sun and the Moon and do not really affect their bodies. In his list dated A.H. 427 he mentions a treatise of his own specially devoted to this subject. و عملت كتابا فى المدارين المحتدين و المتساوين وسمته بخيال الكسوفين عند الهند، و هو معنى مشتهر فيما بينهم، لايخلو منه زيج من ازياجهم؛ وليس بمعلوم عند اصحابنا (الفهرست، ص ٣١) "And I have prepared a book on the two united and equal axes and entitled it as the idea of the eclipses according to the Indians. It is a subject well-known to them and
none of their Astronomical treatises is devoid of its treatment, but it is not known to our Muslim Astronomers." He has summarized the theories and adduced the requisite proofs in their support, relying on Paulis, the Greek, and Brahma Gupta's Khandakhandayaka. As the English translations of the latter, with necessary notes and appendices by Mr. P. Gangoly, and of the Suryasid-dhanta by Burges and edited and annotated by the former, and both published by the Calcutta University, are easily available, I refer the readers to the chapters five and six of the former and chapters fourth to seventh of the latter work for the Indian treatment of the Lunar and the Solar eclipses. The appearance of the New Moon, says al-Bīrūnī, is an altogether uncertain affair and predictions do not some- with having perfected the theory of planetary motions in the best possible manner (p. 1161). Herein al-Bīrūni lays claim to no original contributions of his own, except the modifications in the Eastern movements of their apogees to the same extent as that of the Sun's apogee-i.e., one degree in 70 ½ instead of 100 years suggested by Ptolemy (p. 1166). Al-Bīrūnī remarks that although the earlier Muslim Astronomers had not taken the trouble to explain the mathematical processes in their calculations, yet the positions of the Planets's apogees mentioned by al-Mamun's Astronomers, Yahya and Habash very much agreed with his own (p. 1197). In chapter sixth of the maqala he strikes an original note, doubting the accepted order of the Planets that placed the Sun between the Moon and the two so called inferior Planets. Venus and Mercury, adding that it was quite possible that the Sun is below all the other Planets except the Moon, as it is equally possible that some Planets intervene between the Sun and the Moon (p. 1301). Later on in Spain Jabir b. Aflah (c. 1140) held it more probable that Mercury and Venus were above the Sun. ### THE ECLIPSES AND THE APPEARANCE OF ### THE NEW MOON The Eighth Maqala deals with the Lunar and the Solar eclipses and the appearance of the New Moon. It is marked by a masterly exposition of their theory in all its aspects. I donot propose to enter into the details, as there is apparently nothing very much novel to mention, Al-Bīrūnī then quotes the various values by the Indian and some other Astronomers. Those who are interested in his detailed exposition of Ptolemy's results are referred to the Persian edition of the *Kitabut Tafhim* wherein he has worked out complete figures in the Earth's radius as ascertained by al-Mamun's Astronomers. The learned editor claims to have taken pains to check the table. In the light of modern advances in Astronomy such figures have only antiquarian interest, as all the ancient and medievial Astronomers lacked the necessary equipment for the precise computations. We now know that the Sun is nearly 300 times more distant than what those former scientists had thought. The nearest star is at least 300,000 times the distance of the Sun and for the purposes of measuring such vast distances not even the Earth's orbit is sufficiently large. And the nearest Nebula is supposed to be at a distance of 7 million light years! Words are wholly powerless to evoke even a remote idea of the scale of our Universe. Undoubtedly our old Astronomers had a very limited notions of the dimensions of the world. Al-Bīrūnī, however, knew that they had not yet even satisfactorily ascertained the Sun's distance. He himself never ventured to hazard any theory of his own where he was not certain of his grounds. ### THE PLANETS The Tenth Maqala deals with the planetary movements. In this part of the book al-Bīrūnī follows Ptolemy implicitly and considers him almost inspired, crediting borne out by the researches of our modern Astronomers. The ancients had hopelessly erred in determining the distances and the magnitudes of the heavenly bodies, except in the case of the nearest of them, the Moon, which was amenable to the operation of the instruments they possessed. "But the Sun," says al-Bīrūnī, "is still immeasureable by our instruments and remains an object for conjectures." (p- 857). و اما الشمس فهوكالموهوم لا يضبط الآلات مقداره ... فلن يتمكن الحساب منه .. ## THE DISTANCES AND MAGNITUDES OF THE STARS FROM THE EARTH Al-Bīrūnī admits that it was not possible to ascertain their distances and magnitudes, as there was no real way known to detect the parallex of the fixed stars (p. 1303). The way suggested by the Greek Astronomers was to place the stellar sphere next to the most distant Planet, i.e., according to Ptolemy 19, 666 times of the Earth's radius (p. 1310). Similarly he calculated the diameter of the stars of the first magnitude and of Mars to be 1/2 of thd Sun's diameter. A Muslim Astronomer Abu-Jafar al-Khazin in his book on the distances and sizes of the heavenly bodies' (الأبعاد و الأجرام) had stated that the stars of the first magnitude had 1/7 of the Sun's diameter, those of the second 1/4, the third 1/21, the fourth 1/24, the fifth 1/27 and the sixth 1/36. He did not mention if he had himself determined them nor did he explain the method by which he had arrived at his results. relation of $2\sqrt{3}/5$ to I. This corresponded equally with the results obtained by Ptolemy as well as al-Battani. ### THE DISTANCE OF THE SUN FROM THE EARTH Al-Bīrūnī had serious misgivings about Ptolemy's calculation of the Sun's distance from the Earth, as it was based on total eclipses and in complete disregard of the annular eclipses, which implied much larger distances. (pp. 868-870). لكن بطلبيوس اخذ قطر القمر فى البعد الأبعد مساويا لقطر الشمس معتمدا فيه الوجود بثقبتى ذات الشعبتين ولم يجعل لقطر الشمس اختلافا باختلاف ابعادها فى فلك الاوج تهاونا بذلك و مخيلا اياه على الغيبة عن الخير مع ايجاب الحال اياه ظاهرا له (ص٨٦٨) وقد اتضح ان القمر فى أبعد بعده عن الارض يقصر عن كسف الشمس بكليتها وهى عند اوجها و اما اقصره عن ذلك اذا كانت هى عند حضيضها و ما حكيناه عن الايرانشهرى فى كسوف الشمس يشهد بخلاف ما بنى عليه بطليوس و ان الكسوف التام لا يمكن الشمس الافى بعد هو الى الوسط اقرب منه الى الأبعد (ص ١٦٨-٨٧٠) According to Ptolemy the Sun's distance amounted to 286 times of the Earth's radius (p. 874). Al-Bīrūnī confesses his inability to check or correct Ptolemy's calculations. Unfortunately he never happened to observe a total Solar eclipse nor possessed precise record about them to rely upon. (p. 874). و لما لم يكن وقع الينا كسوف للشمس تام مرصود فى وقت معلوم و لا من الارصاد المحققة ما يمكن به الوصول الى هذا الباب من غير تسلم ما أسسه بطلبوس . (ص ٨٧٣) That al-Bīrūnī was perfectly justified in his doubt is lvii 10i 34ii 52iii 3iv. Equally improved are his other values. In respect of the mean Obliquity of the Moon's Ecliptic he has accepted the more accurate value of 5 degrees, as determind by Ptolemy, against 4½ of the Indian Astronomers and al-Battani and 4¾ of al-Mamuns' Astronomers, Yahya b. Abi Mansnr & Habash and later on the sons of Musa. In this particular matter he frankly admits that he did not know the way to ascertain and check it (p. 776). The Moon looks larger when nearer to the Earth and smaller when more distant. Its apparent diameter, therefore, varies relative to its distance from the Earth (p. 865). Al-Birūni's researches established that its Longest distance was 63° 52′ 40″ times of the Earth's radius and the shortest 31° 55′ 5″ (p. 844). As to its diameter he rejected al-Battani's calculation of 33° 33′ 20″ of the Earth's diameter remarking that it was not noticeable at any one of the Moon's distances from the Earth. He points out that howsomuch the Moon's diameter may appear to differ at various distances its real diameter should be a constant value. He has preferred Ptolemy's value of 31′ 20″ as compared with the Earth's diameter, and this very much corresponds to the mean apparent diameter 31′ 7″ as determined by the modern researches. Similarly he prefers the ratio between the Earth's shadow on the surface of the Moon during the Lunar eclipse as bearing a First of all, he has tried to determine the length of the ordinary Lunar month corresponding to the period of the Moon's movement from one phase to the same phase again, technically known as the Synodic month, (i.e., refering to its position to the Sun), and, relying on previous accounts of anceint observations, he has computed it as a little more than 29½ days, (to be exact 29° 31° 50° 8° 10° 20° 13° 1). He has determined its daily average to be 13° 10° 35° 2° 10° 6° (or in the alternative 7° 10° 4° 1) (p. 730). In the next chapter he has undertaken to rectify the Mean and the Anamolistic daily movements of the Moon. The latter has reference to the nearest point of the Moon's approach to the Sun (perihelion) and back to the same, which takes a bit longer than its movement from one star and back to the same. The extreme pains that he has taken in fixing both may very well be judged from the minute results of his investigation. According to him the first is 13° 10¹ 34¹¹ 2¹il 7¹v 17º 8v¹ 25v¹l 57vll 25¹x 42x and the second 13° 3¹ 13¹¹ 54¹il 8¹v 5v 31v¹ 32vll 9vll 44¹x. He had obtained these values after comparing the results of his own three consecutive Lunar observations in A.H. 393 & 394 (p. 746) carried out after the most careful precautions Just to illustrate al-Bīrūnī's advance we may point out that according to al-Battani the mean daily motion amounted to 13° 10′ 35″ and the Anamolistic to 13° 3′ 54″. Now al-Birūni's mean motion is the closest approximation to the modern researches which compute it as 13° Astronomers of Greece and India and believes that Ptolemy had missed some of its motions in the same way as he did in the case of the Sun. و قد استبان للعيان تخلّف الحركات الـــتى عند الهند و القدماً و عند ابرخس و بطلبيوس عن الرؤية تخلفا كثيرا و اوقات الكسوفات مع ذلك مقاربة لاصولهم فدل ذلك على ان ما غشى حركة القمر منه مناسب لماغشى حركة الشمس (ص ٧٢٩) He further remarks that it is not difficult to observe the Moon's return to its former place with refernce
to the fixed stars, but over long periods it is always altering its path and eventually the minute differences accumulate and cause the difficulty. (p. 785). The solution suggested by him is to keep a constant watch over it and collect reliable data from generation to generation. "The Moon's movements," says al-Bīrūnī, nay, those of all the moving bodies in the heavens are not ascertainable in a single attempt, as they vary from time to time. So they are at first determined in a larger and more approximate manner. When we repeat our observations second time we come nearer to the true value, and as we keep comparing our later results with the previous ones we arrive at a greater precision. This method should go on ad infinitum and that is all that is required of an original worker in this field. (p. 776). Even a bare outline of his discussions relating to the complicated motions of the Moon would land us into the very depths of Mathematics and we confine ourselves here only to a few of his important results of general interest. The Moon does not revolve in a perfect circle and its maximum and minimum distances appreciably differ. Its mean distance is estimated between these two limits. Moreover, the Moon is always changing its path and its motions are subject to variations. Astronomers and Mathematicians have always been much perplexed by its irregularities and their combined efforts have not yet been crowned with perfect success in computing and predicting its exact positions at different times. Thanks to continuous improvements in the Lunar theory these inequalities have been gradually reduced to the minimum. Exact records of the past observations, specially of the Lunar eclipses are, therefore, of immense value. Hipparcus discovered a considerable inequality in the Moon's course and Ptolemy detected a second inequality and tried to cover it by means of an epicycle. When the Muslim Astronomers took up their observations they appear to have realized that even Ptolemy's theory did not fully account for the Moon's motions. It is, for instance, claimed that a third inequality was detected by Abul-Wafa, but his claim was disputed by some modern scholars in favour of Tycho Brahe's. But with reference to al-Bīrūnī the point is not so difficult to settle. As the matter has enjoyed some importance I would like to give al-Bīrūnī's views a little in detail to show that he certainly knew the inadequacy of Ptolemy's theory and tried to remove its defects. al-Bīrūnī points out that the Moon's movements very much differ from those determined by the ancient and moisture etc. which were supposed to be subject to the influence of the stars. Strictly speaking Nau initially concerned the rains. The art of recognizing the Anwa formed a special science with the Arabs. They closely connected the Anwa with the Moon's mansions. The Indians had their own system of connecting the lunar mansions with their astrological system. The Muslims, who had inherited both the systems, combined them and compiled annual calendars forecasting the meteorological, agricultural and even medico-hygienic aspects for the various periods. This information, based on long observations general experience and popular ideas, inherited from the past, could not be of a strictly scientific order and as pointed out by al-Bīrūnī varied from place to place. The seasons and the natural conditions produced by the former are really the result of the relative position of the Sun in the sky. All such forecasts were, therefore, of a tentative nature. For instance, winter starts at various times in various places. He points out that the whole system reflects an analogy to the results arising out of the Sun's movements in the Zodiac. ### AL-BİRÚNİ'S LUNAR THEORY The theory of the Lunar motions has always formed an important part of Astronomy and al-Bīrūnī has devoted wholly the Seventh Maqala and parts of the next to this subject. complete accord with the modern researches which makes it about 72 years for a single degree and 25,867 years for the complete circle. All the subsequent leading Astronomers like Naṣīru'd-Din Tūsī, Qutbu'd-Din Shirazi and Ulugh Beg computed it as 70 years. Thus al-Bīrūnī's result is the nearest approach to our modern calculations, next best being that of lbn Yunus, who, however, had preceded him by many years and in point of time can claim priority for correct valuation. I have discussed this subject a little more in detail to show that al-Bīrūnī's list of the stars' positions is not a mere copy of any one of his predecessor's catalogues. For this purpose, taking Ptolemy's catalogue for his basis, he worked out his own results and there is no doubt that judging from the value assigned by him to the precession of the stars in his times, his revised computation of their positions has to be taken on its own merit and should not be considered to be a mere second-hand affair. This, however, is not intended to belittle al-Battani or Ibnus Ṣūfī's valuable researches, as such matters, in the words of al-Bīrūnī, depend on many minute observations spread over long periods, اما درستی آن از نادرسی نتوان دانستن مگر برصد های. بسیار و باریك و مدتهای. سخت دراز (كتابالتفهیم ص۱۳۲). and, we may add, the exceptional genius of persons like al-Bīrūnī and Ibn Yunus. ### THE ANWA The Anwa (the plural of Nau, a star) mean certain atmospheric phenomena like the rains, winds, heat, cold figures to their groupings and even assigned some traditions and stories suited to the early stages of civilization (p. 1010). The Arabs, for instance, had their own system of nomenclature, but al-Bīrūnī had prefered the Greek system of 48 figures and 12 constellations arranged on a belt, remarking at the same time that these resemblances are seldom accurate enough to comprehend all the stars, and in fact leave a number of them outside their ranges. Al-Bīrūnī has discarded all such descriptions as their tempers resting on colours and more or less other superstitious and Astrological notions. The scientific value of such descriptions is mainly the concern of Astrophysics, which enters into the question of their composition, age, evolution and even distances etc. But it would take us on a discursion hardly pertinent to our present study. Ptolemy had calculated that the sphere of the stars moved in 100 years to the extent of a single degree out of a total of 360 degrees (p. 998). All the preceding Muslim Astronomers except Ibn Yunus were in agreement that it took only 66 years to make a complete revolution. In At-Tafhim al-Bīrūnī, relying on al-Battani, had stated that each of the fixed stars as well as the apogees of the Planets moved at the rate of 66 years for a single degree (p. 135, Persian edition) and 23,760 years for the complete belt. The ancients had made it 36,000 years (p. 132). al-Bīrūnī and IbnYunus, however, independently, calculated that it took more than 70 years to complete the revolution. They only differed in the additional fraction, $\frac{1}{14}$ according to Ibn Ynnus and $\frac{1}{3}$ according to al-Bīrūnī. This is in to be composed of the clusters of the stars". He disagrees with Aristotle and his supporters' opinion about the position of the Milky Way being below the sphere of the planets and rightly believes them to belong to the highest sphere of the stars. Similarly he has discarded the views held in Astrology and supported by Aristotle that they injured the sight and caused sorrow and misfortune. # THE EASTERN MOVEMENT OF THE FIXED STARS Al-Bīrūnī holds that all these stars moved to the East on a central axis and parallel to the Zodiac line. The nature and extent of this revolution could be ascertained by observations spread over long periods and al-Bīrūnī has tested the matter by comparing his own restricted observations with those in Ptolemy's catalogue. His gauge year is 400 of Yezdgerd Era, which corresponded with Sultan Mas'ud's return to Ghaznah after his father's death in A.H. 422. He found that the stars had moved to the extent of 13 degrees as compared with Ptolemy's time. He adopted the revised magnitudes of Ibnus Şūfī. Every nation, he says, (p. 1020), had given the stars different names in their languages and ascribed imaginary اكثر استغراقاً له و اصدق تتبعاً لزواياه و دقايقه بمن شعب همته شعباً فلم يبلغ ذلك شيء من غايته الا اليسير (ص٩٢). al-Bīrūnī frankly admits that he himself never undertook a complete charting of the Heavens, except in a restricted manner, and has contented himself in al-Qānūn to rest his list of stars on Ptolemy's as revised by Ibnul-Ṣufi, resorting to such corrections as were necessary to bring their position up-to-date according to their apparent progress in Heavens to the further extent of some 13 degrees as computed by al-Bīrūnī himself (p. 1012). But for this purpose he claims to have compared all the available copies of Ptolemy's text and its Arabic translations available to him. بعد العناية الصادقة بتصحيحها من عدة نسخ و تراجم مختلفة (ص ١٠١٢). In his catalogue, however, he has dropped such descriptions as colours, considering the matter to be better suited for physics. He was not much impressed by the prevalent theories about the causes ascribed by the physicists about such matters. At best they were surmises of uncertain nature. فاما سائر صفات الكواكب الثابتة من الالوان و الاشراق و الهدف و الرجرجة فانها بالاحوال الطبيعية اشبه و قلما يقضى البحث عن عللها الى ثلج اليقين (ص ٩٩١)٠ On the Nebulae and the milky-way he has some striking remarks in a small chapter (p. 992). I quote him in extenso. "In the skies we have some objects not resembling the stars in their roundness and light. They are the white patches called the Nebulae. Some of these are considered هذه الكواكب كثيرة جدا بحيث لوحددت من الساء بقعة و انعمت التأمل لما فيها من الكواكب وجدته كالفائت عن التحديد لأجل الكثرة (ص ١٠١٠) . He admits that the instruments of his times were unable to help the eyes in ascertaining their numbers. و يعجز البصر من الضبط و التحديد (ايضاً) .
The ancient astronomers had tried to fix the positions of a number of the more brilliant ones visible to the bare eyes upto the sixth degree of their apparent magnitude. The foundations of the science of placing the heavenly bodies on the celestial hemisphere were laid amongst the Greeks by Hipparchus, who is believed to have prepared a catalogue of more than 1000. Ptolemy's catalogue in his al-Magest rests a great deal on that of Hipparchus and al-Bīrūnī has rightly remarked that it is not at all certain if Ptolemy himself carried out his own observations or intentionally left them out considering the matter as a mere branch (p. 991). During the Muslim period when the whole field of Astronomy was being checked afresh, Abdu'r-Rahmān b. Ibnul-Ṣūfi, the court-astronomer of Azudu'd-Dawla of the Buwayhid dynasty, a great lover and patron of sciences, devoted his entire life to this single branch. al-Bīrūnī has rightly placed his confidence in Abdu'r-Rahmān's unrivalled performance and considered him as a specialist to be the best informed of all the angles and minute of his subject. و اما ابو الحسين فما كان يهمه من العلم ما كان يهم بطلبيوس و انما افنى عمره فى هذا الفن حتى عرف به و قاصر الهمة على شيء واحد xlvii our modern times to develop the dynamical and physical aspects and make them necessary parts of Astronomy. Anyhow, it goes to al-Bīrūnī's credit that wherever he has rarely touched on such questions he has generally maintained sane views. For instance in the case of the Sun, against the prevalent metaphysical or rather mythological notions, inherited from the Greeks, making it a spiritual body destitute of any mundane elements, al-Bīrūnī uniformly held that it was a fiery body and the, solar prominances noticeable during the total eclipses were just like the flames arising in the atmosphere round some burning body (p. 646). و اما ذوات الاذناب التي يقال لها ترى حول الشمس المنكسفة و قد اتضح من العلم الطبيعي انها دخانيات ترتقي الى حيث تلتهب في الهوا. الحار المجاور للنار. ### THE FIXED STARS In the total absence of any evidence of the proper motions of the stars, detected in a few cases by our modern Astronomers with the help of their new instruments and intricate methamatical computations and other physical phenomena, it was impossible for the Astronomer of the former times to imagine or treat them except as fixed points in the Heavens serving as useful background and points of reference for determining the movements of the Planets etc. Al-Bīrūnī knew that the skies were full of innumerable bodies of various magnitudes and it was impossible to determine their number by sight even in a small part of the sky. al-Bīrūni undertook to solve it for his own satisfaction. After complicated researches based on his own repeated observations as well as those of his predecessors, of which he has rendered a detailed account from the days of Hipparchus and Ptolemy, he found the length of the year as 365 days 5 hours, 46 minutes and between 46 and 47 seconds (or 47 seconds as he puts it in *At-Tafhim*). In an article on the Jalali Calendar, based on the results of the Muslim Astronomers including Omar Khaiyyam, (published in Islamic Culture, Hyderabad Deccan, 1943, pp. 166-175) we have dealt with the researches of the Muslim Astronomer for determining the correct value, which soon after al-Bīrūnī eventually led to the best reformed solar calendar of Jalaluddin Malikshah Seljuqi. It appears that his Astronomers found the length of the year as 365 days 5 hours and 49 minutes, which most nearly approximates to the true length of the mean Tropical year according to the most modern researches, *i.e.* 365 days 5 hours, 48 minutes and about 47 ½ seconds. It is, however, still a moot question whether the length of the year has always been constant or has been gradually increasing progressively. But for the specialists al-Bīrūnī's careful researches and observations may yet serve as a useful record. ## AL-BIRUNI'S OPINION ABOUT THE PHYSICAL NATURE OF THE SUN In al-Qānūn al-Bīrūnī did not as a principle enter into matters which he thought should belong to the domain of Physics rather than Astronomy, which had not yet emerged from its geometrical stage. It was reserved for Continuous observations by the Muslim Astronomers from the days of Al-Mamun had shown that the length of the year was really much less. Observations at Damuscus found it as 365 days 5 hours and 46 minutes, and the same were confirmed by Yahya b. Abī Mānsūr in his observations at Baghdad, but his earlier observations had shown it as 365 days 5 hours and 54 minutes. Al-Bīrūnī tells us that Al-Māmūn was very keen to measure the correct length of the Tropical year, and for that purpose set up an iron pillar at Dair Marwan in Damuscus, but after comparing its measurements was surprised to find out that the pillar had decreased to the extent of a barley's length during the intervening night. Consequently he almost despaired of ascertaining the true length of the year with the help of the available instruments. Commenting on this episode al-Bīrūnī remarks that a single individual's life—nay, even the lives of several generations put together are not sufficiently long as compared with the requirements of such matters. This, on the other hand, should be a sufficient warning to an individual against constituting himself the sole authority on the basis of his own observations only. It is, therefore, necessary that the process of observation should continue over many generations, one passing the work to the other (p-637). al-Battani's reseaches had resulted in establishing the solar year as consisting of 365 days 5 hours, 46 minutes and 24 seconds. But the subject engaged the attention of other Muslim Astronomers also and eventually Astronomers, Khalidul-Marwazi, Ali b. Isa-ul-Harrani and Sind b. Ali, and later on the sons of Mūsa and Abūl-Wāfa in Baghdad, al-Battani at Al-Raqqa and Sulaiman b. Asbah at Balkh and Abul Hamid al-Khojāndī at Raiy (pp.655-664). Subsequently he carried out his own observations in Jurjania and Ghaznah and was thoroughly convinced of the Muslim Astronomer's observations as against Ptolemy's observation. He rightly remarked that the new results obtained during the preceding two centuries and supported by his own could not be brushed aside. Rejecting in Chapter seventh of the sixth Maqalah Ptolemy's view about the fixity of the Sun's Apogee he proceded in the next chapter to determine the correct value of this movement. All his predecessors had determined it as amounting to one degree in 66 years, and, as it appears from his *Kitabut-Tafhim* he also depended on al-Battani's researches and accepted this value. But six years after further advance and careful studies of his own, all embodied in so much detail, in al-Qānūn, he at last discovered that the movement took more than 70 1/3 years to cover a single degree of Heavens' circle, and 0° 0¹ 7¹¹ 44¹¹¹ 54^{1V} in a single day (p. 677). This result obtained by al-Bīrūnī is very much in accord with our modern researches, which make the movement as 52.2 every year and one degree during 72 years. # THE LENGTH OF THE SOLAR YEAR Hipparchus and Ptolemy had fouud the length of the Tropical year to be 365 days 5 hours and about 56 minutes. the prime meridian by which the Longitude according to the Indian system were calculated in their books. ## PROJECTION AND CARTOGRAPHY al-Bīrūnī was intensely interested in both and, as he mentioned in *al-Athār*, devised ways for Cylindrical and Conical Projections for the Geographical purposes. In his list of books he mentions i.e. a full description of the inhabited world with illustrative maps. If he was ever able to complete these books, they should have served as valuable guides and models to the subsequent writers like Idrīsī of Sicily, who compiled his well-known Geography and Atlas for the Norman ruler Roger II. Unforunately none of such maps could be included in al-Qānūn which was treated by al-Bīrūnī as a mere summary of his vast knowledge of Astronomical subjects, each of which received his separate exposition in more elaborate treatises. # AL-BIRUNI'S DETERMINATION OF THE MOTION OF THE SUN'S APOGEE From the Earth al-Bīrūnī passes to the Heavens and begins with the Sun. Ptolemy had held that the Sun's Apogee (the highest point from the Earth) was fixed, pointing to the same spot in the Heavens as was long before determined by Hypparchus. When the Muslim Astronomers commenced their observations they found that the Apogee had moved further east from tho point mentioned by the two Greek Astronomers al-Berūnī mentions one by one the observations by Al-Mamun's history written by 'Utbī tallies with Meerut and by the mistake in the manuscripts has been corrupted to Barana, as in the Arabic script the two names are easily liable to be confused. al-Bīrūnī, however, has mentioned another place in the neighbourhood of Bulandshahr named as Ahar, which occupies a very ancient site. The inference is equally clear, i.e., like Delhi the fort of Baran did not exist or was unknown by this name in those times. As to Ujjain, the prime meridian of the Indian Astronomers, al-Bīrūnī's reckoning of the Latitude and the Longitude is most correct. | Longitude | | Latitude | | |-----------|--------|-----------|--------| | al-Bīrūnī | Modern | al-Bīrūnī | Modern | | 105 50 | 79 58 | 26 25 | 27 3 | Let us show how we have worked it out. According to al-Bīrūnī Ghaznah has a Longitude of 94.20. The difference between the two places is 11.35°. The modern Longitude of Ghaznah being 68.25 the difference is 11.35. Thus both the results are identical. But al-Bīrūnī vehemently rejects the Indian Astronomers' theory of its being situated on the middle-line of the inhabited world, called the Cupola of the Earth, (قام الأرض) running from Lunka on the Equator to the Meru mountain on the top of the Northern Pole, and passing through Ujjain, Rohtak fort, Thaneshwar plains, the Jamuna region and the Himalyas.
(p. 504). The Persian Astronomers had also borrowed this idea from India and the tradition passed on to the earlier Muslim Astronomers, who corrupted the word Ujjain to Uzain and eventually to Arin, which persisted for long times to denote Latitude errs by half a degree and Longitude by one. It the innermost places Dhar's Longitude is slightly wrong by more than a degree and Latitude by one and a half and Mhow's Latitude by one and a half and Longitude by three degrees. In the Western Punjab Sialkot's Longitude is in excess by one and a half degrees and Latitude by $\frac{1}{2}$ of a degree, Jhelum's Longitude by less than $\frac{1}{2}$ and Latitude by less than $\frac{3}{4}$ of a degree, and Peshawar's Longitude short by less than a half and Latitude more than a degree only. It may, however, be pointed out that al-Bīrūnī's tables do not mention either Delhi or Lahore, nor does his Indica. The inference is clear. Both did not exist or were unknown by these names in his times. As to Delhi my own researches have led me to conclude that it was founded some time after. Lahore, which is called Lohawar, is mentioned as a regional name and its capital as Mandkakaur (مند ککور) in the best readings of the manuscripts of the Indica and al-Qānūn. This name should not, however, be confused with the name of a fort called Lauhaur in the mountains of Kashmir as the latter's Latitude is at least two degrees removed from modern Lahore. But some places near about Delhi like Sunnam, Meerut, Sursawa (now Sarawa) and Thaneshwar, the holy city of the Indians are mentioned. But my own place, Baran, (now Bulandshahr) which was supposed by modern historians to be one of the places conquered by Mahmud in the course of his famous campaign against Mathura and Qannauj in A.H. 409, is equally missing. I am, therefore, convinced that the place mentioned in the contemporary hemisphere. The superiority of his notions can very easily be judged by comparing his world map with that of Ibn-Hauqal (c. A.D. 975) reproduced from a manuscript of the 11th century facing page 86 in the 'Legacy of Islam'. Proceeding Eastward and taking Ghaznah as our starting point, we discover that there is hardly a difference of a degree or so upto the place occupying the site of modern Lahore. By the time we reach Mathura the Latitude errs slightly by more than one and a half degree but the Longitude by one sixth only. Meerut's Longitude is wrong by 21/4 degrees and Gwalior's by less than a degree and their Latitudes are short by a single and a quarter degree respectively. Pryag (modern Allahabad) suffers by half a dergee in its Latitude and one and a half degree in the Longitude; Benaras by less than a degree (Latitude) and two and a half degrees (Longitude), Ajodhya by one and a half (Latitude) and two and a half (Longitude) Oannauj both by about one and a half degree, Patliputra by two and a half both ways and Mongair by four degrees (Longitude) and less than three (Latitude). On India's West coast Somnath's Longitude is wrong by 3/4 degree and Latitude by $4^{-1}/4$ degrees, Cambay by two degrees both ways and Bharoach by 1/2 degree (Latitude) and $1^{-1}/4$ (Longitude). Maharashtra is placed considerably North and its Longitude is wrong by two degrees. Thanah's (Bombay) Latitude (19.20) corresponds with its correct position (19.12), but its Latitude (104) exceeds by more than four degrees and a half. In Sind Daibal on the mouth of the Indus river (called Mehran) nearly corresponds with the modern Karachi. Multan's above nor learnt any Longitudes and Latitudes from the Indian books. God alone will help in achieving our objects". By the time he worte al-Qānūn he had collected sufficient data to determine the positions of the Indian places. (Kitābu'l-Hind, p. 163 and English Translation Vol. I. pp. 317-318). Extent of India from Peshawar (his Long. 970, 10 E) to the mouth of the Ganges (Long. 110, 40 E) would amount to 13 ½ degrees, while according to the modern calculations it should be 17 degrees, thus making al-Bīrūnī's estimation short by 3 ½ degrees only. His Southern-most Latitude for the Adam's Bridge (9 N) is most exact differing by 15' only while its Longitude 119 E exceeds by 3 degrees as compared with our 79, 30 E. Similarly the position assigned to Ceylon is nearly correct so far as the Latitude goes but exceeds by about 4 degrees towards the East. In the case of other inland places in the South like Tanjore and Rameshwaram the Longitudes are wrong by as many as 8 to 9 degrees and even the Latitudes by 4 to 4 ½ degrees. Judging from the positions of the forts in the mountains of Kashmir's Southern boundary at 33 N, we find that estimation of India's length is amazingly close to the real dimension. So was his idea of its Peninsular form. In an outline map of the inhabited world in the manuscripts of his at-Tafhīm reproduced in the Encyclopaedia of Islam under its article on Geography and also in the Persian edition of the book itself, he gives an almost correct representation of India's shape and place in the Eastern in his times owing to the extension of Islam on the three continents all the barriers and impediments which existed in Ptolemy's times and forced him mainly to depend on hearsay in determining his geographical positions had been removed and facilities for travelling, trade and exploration greatly increased, resulting in a much better knowledge of the countries and the nations of the world. # MENTION OF INDIAN PLACES IN AL- $Q\bar{A}N\bar{U}N$ A map of India based on the tables in al-Qānūn would not on the whole present a very distorted picture. Unfornately al-Bīrūnī had no opportunity to travel widely in this country. As explicitly mentioned by him in his Indica he visited only a few places in the Western Punjab and determined their Latitudes. "I have myself found the Latitude of the fortress of Lauhur as 34°, 10,56 miles from the capital of Kashmir, half the way being rugged country and the other half plain. I enumerate in the below what other Latitudes I have been able to observe myself:— | Ghaznah 33° 35′ | Lamghan 34° 43′ | |--------------------------|----------------------------| | Kabul 33° 47′ | Purshavar 34° 44′ | | Kandi, the guard-station | Waihand 34° 30′ | | of the prince 33° 55′ | Jailam 33° 20′ | | Dunpur34° 20′ | The fortress Nandna 32° 0' | | _ | | The distance between the last place and Multan is nearly 200 miles. | Sialkot32° 58′ | |------------------------------| | Mandakkakor $31^{\circ} 50'$ | | Multan29° 40′ | We have not travalled beyond the places mentioned xxxvii its sides by land. This unreal extension of land in the Far East was responsible in fostering a belief in the mind of Columbus that it was possible to reach Asia by direct navigation across the Atlantic. Leaving the dark Continent of Africa and most of the Western and Central Europe aside, al-Bīrūnī's knowledge of Asia and the Indian Ocean was vastly superior to that of any earlier Geographers. Africa too he does not extend much beyond the source of Nile in the Mountains of the Moon, i.e., not very far from the Equator, and thereby joins the Atlantic Ocean with the Indian Ocean. He has a very accurate idea of the position and form of the Indian Peninsula. As to China, which to him meant the rest of the Far East land beyond India, including the Indo-Chinese and Malay Peninsulas lying between the fifth and the fortieth Latitudes and hundred sixteen and hundred sixty two of his Longitudes, i.e. some 46 degrees, his knowledge, thanks to the Muslim sailors and traders, had grown to some extent, but as compared with India it was still rather vague, and we find that in locating some of the identifiable places like Khanfu (Canton) the Latitude are much lower down than their exact positions. On the other hand of the Turkish lands, which also included the homelands of the Tartars and the Mongols, he has a better knowledge. During his stay at Mahmūd's court two embassies from the Far-Eastern part had visited Ghaznah and al-Bīrūnī may have collected information about those lands which he has utilised in al-Qānūn. Of the Muslim countries in Asia his knowledge is full and most reliable. In his Kitābu't-Tahdīd he remarks that parison it may be pointed out that al-Bīrūnī has chosen the most distant place of the West African coast on the Atlantic Ocean near Susu'l-Aqsa as his prime meridian, according to which he calculates the Longitude of Cordova in Spain as 9, 40 E, and its Latitude as 35, 2 N. Now according to the Greenwitch Meridian its position is 4,48 w and 37,52 N. al'Bīrūnī's coastline should, therefore, be some 14, 28 w of Greenwitch line. But as we proceed Eastward and reach Cairo the difference exceeds the right value by a considerable extent. Cairo's position is 31, 13 E, and 30, 1 N. In al-Qānūn it is 54, 40 E and 30, 20 N. Thus his Latitude corresponds quite closely. But according to his prime meridian it should be 45, 51 E i.e., 8, 49 degrees less than the calculated position in al-Qānūn. By the time we reach Baghdad the discrepancy has still further widened. According to Greenwitch line Baghdad is 44, 30 E and 33, 18 N. In al-Qānūn it is 70 E and 33, 25N. Here again the Latitude corresponds, but the Longitude exceeds the correct position by about 11 degrees. Let us stop here and consider the point. al-Bīrūnī had admittedly no personal knowledge or direct means to check the correctness of the true Longitudes and Latitudes in those distant regions. He had generally to depend on his predecessors and take their estimate more or less on credit. We know, e.g., that Ptolemy's Africa was too wide and vastly exaggerated particularly in the South and the East, virtually connecting itself with Asia and making the Indian Ocean a lake surrounded on all 70 degrees only. al-Bīrūnī determined that the difference between the Longitudes of Baghdad and Ghaznah amounted to 24°-20¹, wonderfully close to the actual difference of 23°-34¹, considering the fact that it was by
indirect method of calculating from distances and directions that this result was obtained. He, however, admitted that inspite of his best efforts there might still be existing slight differences in his computation. In order to ascertain the vast amount of altogether new information collected by him, one has to compare his list of more than 600 names with al-Battani's 100 only and the contents of some contemporary geographical works like Hududu'l-'Alam, compiled only half a century earlier. One will notice that extensive regions like India, little or altogether unknown to the outsiders, have come into full light. Of course, his knowledge of India is incomparably the finest for his times, and even later when we come to Abul-Fazl's Aīn of Akbar's time. It is, however, necessary that excepting a few, the Longitudes and Latitudes in al-Qanan have been computed by the author by means of comparing their positions to one another and the distances ascertained from travellers or inhabitants of those countries or on the basis of other written and oral reports. After a close scrutiny, I find that generally speaking the Latitudes are more approximately correct than the Longitudes, in respect of which he has erred to a much larger extent. But allowing for such inevitable deficiencies, some of the results are strikingly successful. For the benefit of the readers who want to make a detailed comhappened sometime towards the end of A.H. 408 or towards the very beginning of 409, when soon after we find al-Bīrūnī in a very sore state of mind wandering in the neighbourhood of Kābul. I may further mention, by the way, that subsequently al-Bīrūnī also measured the area of the Earth's surface, and its volume and weight in gold. We should, however, remember that although his results came very close to those of al-Ma'mūn's Astronomers, al-Bīrūnī has preferred to use their measurements, as he says their instruments were more precise and their labours of extremely exacting and fastidious nature. #### TABLES OF LONGITUDES AND LATITUDES In at-Taḥdīd al-Bīrūnī tells us that as he had made Ghaznah his second home, he was anxious to carry out all his favourite scientific researches there, and determine for the first time the correct Longitude of Ghaznah by reference to Baghdad. He had fixed the former's Latitude as soon as he was there, but the establishment of the Longitude was a much more complicated affair. By the time he wrote the present work he had accomplished it successfully. It is necessary to remember that in the matter of Longitude much confusion prevailed in those days. Some had taken the Canaries Islands as the starting point, according to which they calculated Baghdad lying 80 degrees to the East, while others treated the farthest point on the Atlantic coast as the primary Longitude, according to which Baghdad was supposed to lie at a distance of attempted the measurement of the Earth, but the standards of their measurements were not precisely known to the Astronomers of al-Ma'mūn who was keen to know the actual dimensions. He, therefore, ordered two praties to measure separately two degrees of Longitude by operating from the same point in opposite directions in the plains of Sinjar near Mosul. After comparing their results they computed that a single degree consisted of 56 ½ Arabian miles and the Earth's circumference 20, 400 miles, which according to my calculations come to 364, 106 ½ feet, and 24, 825 ¾ English miles respectively and when compared with the modern calculations the former exceeds by 5/11 mile and the latter by 171 miles only. In order to satisfy himself, al-Bīrūnī tried without success to measure a degree by the same method in the plains of Dihistān (Jurjān). But later on, while in detention in the Fort of Nandna (in West Punjab), he resorted to a trigonometrical method as suggested by al-Ma'mūn's Astronomer Sind b. 'Alī. The whole operation is described in at-Tahdīd without mentioning his actual values, al-Bīrūnī obtained his own by calculating the height of the peak of a mountain in the neighbourhood plain and ascertaining in the sight the decliniation of the horizon from the same point. He found the length of a degree to consist of a little more than 56 Arabian miles, which, according to my calculations, falls short by about 12 miles in the radius and 70 ½ miles in the cricumference as compared with our modern scientists. A slightly different account of this event is also given in at-Tahdīd, from which I conclude that it must have various oceans in the North, East, West and South all combine at different points. In the North, his limits are set by the habitations of the Suwars, Bulgars Russians, Sclavs and Azovs, in the West by the northern regions of Africa, Spain, France and some other parts and unknown lands, and then the coldest regions unsuited for habitation. In the South, except the groups of East-Indies Islands (الزامج و الزامجات و قير و الوقواق و الزامج و مثله) and Ceylon and a few others, he admits nothing much is known of the lands or people from the sailors in those parts. In the East, China forms his terminus, although as mentioned above, he very much believed in the existence of the regions (e.g. Japan) lying in the Far Eastern ocean as in the West. Except for the upper portions, he knows nothing much of Africa beyond the sources of the Moon across the Equator after which he thought the oceans coming from the West and the East combined. His detailed knowledge of the seas, gulfs and inland lakes like the Caspian is very precise. # MEASUREMENT OF THE EARTH BY AL-BIRUNI In chapter seven of the fifth Maqala, al-Bīrūnī deals with the dimensions of the Earth's globe. As I have already treated this subject in full detail in my special study "Muslim Researches in Geodesy" in the Commemorative Volume published by the Iran Society in 1951 on the occasion of al-Bīrūnī's Millenary Celebrations, I propose to touch upon it here rather very briefly. The ancient Greek and Indian Astronomers had world on their side by the coast line of the Atlantic Ocean, as they had no reports except about those islands (Canaries and Madeira), not very far from there. Nor did the reports from the Far East exceed beyond the limit of a half circle, thus confining the known inhabitation mainly to the two northern quarters of the globe, not because, says our author, it is necessary by nature or climatic conditions but simply because of the lack of reliable reports about the remaining quarters. It is indeed most remarkable that he goes still further in his at-Tahdīd by asserting that land must exist beyond the seas between the Western and Eastern coast lines of the known world, thus anticipating the discovery of the American Continents in the Western hemisphere:— «اما امتناع العماره فی حصتی الشرق و الغرب و لیس فیهما مانــع من جهة افراط حرّ او برد و ذلك موجب ان یكون بقعة مفروضة دون البقیة و یكون المیاه محیطة بها، "There is nothing to prohibit the existence of inhabited lands in the Eastern and Western parts. Neither extreme heat nor cold stand in the way and therefore it is necessary that some supposed regions do exist beyond (the known) remaining regions of the world surrounded by waters on all the sides." ### HIS GENERAL PICTURE OF THE WORLD Even the general picture of the world as presented by al-Bīrūnī is remarkably accurate. He tells us that the length of the inhabited world is greater than its breadth. It is surrounded by the seas on all its sides, and the know at least the following titles from his own list compiled in 427. A.H. (١) كتابُ تحديد نهايات الأماكن لتصحيح مسافات المساكن في ١٠٠ ورقة (٢) وكتاب تهذيب الاقوال في تصحيح العروض والاطوال في ٢٠٠ ورقه (٣) وكتاب تصحيف المنقول من العروض و الاطوال في ٤٠ و رقة (٤) و مقالة في تصحيح الطول و العرض لمساكن المعمور من الإرض (٥) و أخرى في تعيين البلد من العرض و الطول كلاهما في ٢٠ ورقة (٦) و مقالة فى استخراج قدر الارض برصد انحطاط الأفق عن قلل الحيال فى ٦٠ ورقه (٧) في غروب الشمس عند منارة اسكندرية في ٤٠ و رقه (٨) في الاختلاف الواقع في تقاسم الاقاليم في ٢٠ و رقه (٩) في اختلاف ذوى الفضل في استخراج العرض و الميل رسالة للبيروني، (ص ٣٣) « الفهرست » طبع باريس سنة ١٩٣٦ م and half a dozen treatises on the correct determination of the Muslim Qibla, a subject also briefly dealth with in al-Qānūn, and at-Tahdīd where he rightly emphasises its importance for the correct performance of Muslim prayers. Besides the theoretical discussion, we know he actually took the trouble to fix such direction from Ghaznah and another place in Afghanistān called Bust. # HIS PREDICTION ON THE EXISTENCE OF THE AMERICAN CONTINENTS BEYOND THE WESTERN SEAS In chapter nine of the fourth Maqalah, where al-Bīrūnī presents a short account of the inhabited world, he remarks that the Greeks had terminated the inhabited # ASTRONOMICAL GEOGRAPHY In this and the next Maqala al-Bīrunī deals with the theories of Latitudes and Longitudes and their applications in determining times in day and night and fixing the positions on the Earth's globe. This was a very favourite subject of al-Bîrūnī and his at-Tahdīd mainly concerns with it. There he mentions that he had an idea of compiling a Geography, combining the features of the Sāmānid Minister al-Jaihāni's work (now lost), describing the various countries and illustrating them by maps, and other kind of books (like that of Ibn Khurdadbih) on the Routes and Distances of important places meant for the benefit of the state and the travellers. He tells us that he spared neither his influence nor money for collecting information and constructed a hemisphere of about 15 feet in diameter on which he marked the Longitudes and Latitudes ascertained by his own investigations or from other reliable sources. As we know the work was interrupted by Mahmud's invasion of Khwārazm in A.H.408. His researches in Geography constitute a very significant part of his original contribution to our knowledge. Dr. Zeki Validi Togon has already published some extracts from the
al-Qānūn, as-Saidana and al-Jamāhir in the above mentioned Memoir entitled Bīrūnī's Picture of the World, particularly from the at-Ṭahdīd, which served as a middle stage between his researches in Khwarazm and the much more advanced knowledge amassed before undertaking al-Qānūn. It is a pity that most of the other books he wrote on this subject are lost beyond much hope of recovery. We al-Bīrūnī calls it the angle formed by the inter-section of the Celestial Equator and the Ecliptic. The Indian, Chinese and earlier Greek Astronomers agreed that it amounted to 24 degrees. But the later Greek Astronomers like Eratosthenes, Hipparchos and Ptolemy found that the angle had declined to 23° 51¹ and some seconds ranging from 19¹ to 23¹ only. When the Muslim Astronomer renewed their observations in al-Ma'mūn's time they discovered that it had still further decreased in the meanwhile. They thought that it was due to the defect in the instruments, and the matter was pursued continously by their successors to establish the real value. After many observations from time to time the results were found to vary from 35 to 32 minutes. al-Bīrūnī himself repeated the observations several times in Khwārazm and Ghaznah and found that his results, amounting to 23°-35¹ tallied with those obtained by his illustrious predecessors like Muhammad and Ahmad sons of Mūsa, al-Battāni, Ibnu'ṣ-Ṣūfī and Abu'l-Wafā. According to Nallino, al-Bīrūnī's value exceeds to a nominal extent of 0.57 only. It did not, however, strike al-Bīrūnī that in reality the angle of the Obliquity itself had been declining progressively. It was reserved to some other subsequent Muslim Astronomers like al-Zarqalī and Naṣiru'd-Din at-Ṭūsī to come to this conclusion, which corresponds with the view of our modern scientists, who compute that the change amounts to about a minute in 125 years. to assign any exact dates for such remote events for which no reliable reports were available (p. 145). On the other hand like our modern Geologists, he believed that very long periods of time were needed to account for the past history of the Earth. #### TRIGONOMETRY The third Maqala dealing with Trigonometry has already been translated in German by Carl Schoy and subjected to critical study by Mr. M. A. Kazim of the Muslim University, Aligarh, in his article "Al-Bīrūnī and Trigonometry" in the "Al-Bīrūnī Commemoration Volume" which he concludes by paying a tribute to the mathematical genius of al-Bīrūnī: "How astonishing it looks to modern mathematicians that a person existing thousand years back happens to produce so much original work inspite of very little resources of those times, at the same time plays a considerable part in diverse fields with astonishing accuracy and mathematical care. The world still knows very little of al-Bīrūnī as a great mathematician and many of his original contributions to mathematics still lie hidden in the pages of his master-work the Qānūn-i-Mās'ūdī and many of his other books which perhaps may never come to light." ## OBLIQUITY OF THE ECLIPTIC The fourth Maqala opens with the detailed discussion of the Obliquity of the Ecliptic, a subject of much historical and scientific importance. We know that in its path round the Sun the Earth's axis is keeping an inclined angle of about 23 1/2 degrees. and 1218 years before the last Persian Emperor Yezdgerd (p. 131). Similarly he points out that the era known after Alexander began from the tenth year of his death, and most important era Sakkala precedes by 587 years the other called Guptakala on which the Indian Astronomical treatise Khandakhandyaka is based. He points out that the beginning of the Muslim era of al-Hijra corresponded with the first of Ramzan according to the pre-Islamic calendar. He calculates that exactly 3472 days had elapsed between al-Hijrah and Yezdgerd. He informs us that the ancient Arabs had learnt the system of inter-calation from the Jews of Yathrab some 200 years before the Prophet's migration to Medina, and the pilgrimage to Mecca as well as the marketing days and festivals fell in fixed seasons. In the year of the Prophet's migration, the pilgrimage fell in Sha'bān, and so the Prophet did not like to perform it and restored it to its ancient position after the conquest of Mecca. It is also noteworthy that according to al-Bīrūnī, the Prophet died on the 8th of Rabi'u'l-Awwal, and not on the 12th as it is generally believed now. He calculated that nine years, eleven months and twenty days had elapsed since the date of his migration. Very valuable and curious information may he gleaned from this part of the book by those interested in the history of ancient Persians, Jews and Christians living in the Muslim lands in al-Bīrūnī's time. For instance, he points out that the Jews and Christians very much differed amongst themselves in reckoning the date of Adam's birth. He, on his part, thought that it was not possible imperfect. The truth is difficult to reach and the ultimate or absolute truth is beyond the reach of science:— ضعف جبلة البشر و ظاهر العجز و النقص فى الجبلة الاولى على آثار الحكمة و الاتقان و الصنعة و حسن التقدير او انتظام التدبير – (رسالة كرية الساء ص ١٠ – ١١) ## CALENDARS AND CHRONOLOGY After discussing in an original manner Ptolemy's six basic propositions regarding the sphericity of the Heavens and the Earth and the latter's fixed and central, but extremely insignificant, position in the Universe, and the nature of the Eastern and Western motions in the Heavens, al-Bīrūnī proceeds to define those imaginary circles like the Poles, Equator, Longitudes, Latitudes, Obliquity, and the signs of Zodiac etc. which are used by the Astronomers as technical terms for their treatment of the Heavens and the Earth and which every student should know before entering the subject. The next part from the fourth chapter of the first Maqala to the end of the next Maqala (pp. 63-270) relates to the discussion of Time as treated in Astronomy, and after defining the day-night and the various kinds of lunar and solar months and years, proceeds to render a detailed account of the calendars of the different peoples known to the author. In al-Qānān he has supplied additional information about Indian systems and the mode of converting the most important Indian era Sakkala into the Hijrah, Yezdgerd and Alexanderian eras and vice-versa. According to al-Bīrūnī's researches Zoroaster, the noble prophet of Iran, lived 267 years before Alexander, (p. 59) and Epicycles to describe the zig-zag paths as recorded by the stars in the course of their apparent motions. With the advance of science we are always wiser than our predecessors, but let us give them the credit that is their due. This theory, how-so-ever faulty, achieved its object to a very great extent, so far as the study of the apparent aspects of the Heavens was concerned. For ordinary purposes it hardly matters whether we consider the day and night due to the movements of the Earth or the Sun. How some eminent Astronomers like Aristarchus, Aryyabhatta and al-Sijzī were able to advance the Helio-centric theory could only be described as lucky flashes of inspiration, not much based on the known demonstrable data as on more or less barest assumptions. The same is true of Copernicus, who was yet far from any precise theory of the Universe. He retained the system of circles and Epicycles. It was really an advance on many fronts, the invention of telescope, use of pendulum and the precise observations of Brahe and subsequent theorization of Kepler that eventually led to Newton, and in our times to Einstein. We, however, do not know if we have yet reached the Ultimate, perhaps we shall never reach the end in our scientific adventure. It was only the labours of the great scientists like al-Bīrūnī that gradually led to extend our range of knowledge. Some of their observations are still valuable and probably of perennial interest. Others have lost their intrinsic value. As AbūNaṣrManṣur rightly remarked: This only shows that human knowledge, like human nature is المقصود معرفة شكل الشي. في كريته او غير ذلك بلكان الغرض وجود السبيل في كل حين الى ٠٠٠٠ معرفة موضع الكواكب و ابعاد بعضها من بعض (ص ٤). Similarly al-Bīrūnī remarks in al-Qānūn:- و هذا الشكل يمكن ان يكون كريًا كما يمكن ان يكون بيضيًا او عدسيًا او اسطوانيًا او مخروطيًّا او مضلمًّا، فليس استدلال بطلبيوس بثبات اقدار الكواكب فى جميع نواحى السهاء و جهاتها على حال واحدة بناف للتضليع عن الشكل، أنما هونافية عن نفس الحركة و الوسوم التي ترسمها الاجرام بها (ص٣٠). "It is equally conceivable that the shape of the Universe be spherical, or oval or elliptical or cylindrical or conical or consisting of several sides, Ptolemy's argument from the stars retaining the same magnitudes in all the parts of the Heavens and keeping the same direction is no sufficient reason by itself, but it precludes the other forms owing to the nature of the motion itself as well as the figures that the heavenly bodies describe in their movements." It cannot, however, be denied that all these old masters were straining the evidence to bring it in line with the idea of describing the movements of the heavenly bodies in circles. For if it were true that the Earth is in the centre and the Heavens move round it, it should have served as its real centre and the very pivot of their Geocentric Heavens. But all those planets' centres never actually corresponded with the Earth's centre and they had to invent the cumbrous system of the Eccentrics earth's surface. After very complicated modern observations and computations such shift (parallax) has been actually observed in the case of some nearer stars and even the distant Nebulae. But in the absence of the telescope and other modern instruments of precision, the ancients had no means to ascertain such displacements. In fact except a few philosophers like Ibn Sīnā and Fakhru'd-Dīn Rāzī, they thought that all the fixed stars belonged to the one and the same Heaven and calculated its distance from
the Earth at a much shorter range than evenour nearest star. Each planet, they thought, had a separate Heaven for itself. And then they had another difficulty to face, i.e. the supposed movement in the circle, an idea originally based on Plato and Aristotle's metaphysical notions of perfection and beauty. Even in his earlier days, in his controversy with Ibn Sīnā, al-Bīrūnī had questioned the soundness of this notion, asserting on his part the equal validity of the elliptical or oval form. The same is his view in al-Qānūn. It stands to his credit that he came so close to the very revolutionary idea of Kepler, who for the first time enunciated the planetary movements in the elliptical forms. Even from his own teacher Ahū Naṣr's treatise on the Sphericity of the Earth (الله كاله كاله) published by the Daira, it is evident that to him and his pupil, the circular movements of the Heavens always meant mere geometric representation of man's observations from the Earth's platform and nothing more real or sacrosant:— demonstrated that it cannot be treated as eternal. On the other hand from the evidence of the rocks and the study of the natural forces like water and fire on the surface of the Earth, he concludes that in the long periods of its history it has been and is still under-going changes. But it is not easy to compute the precise time the Earth should have taken since its very beginning. He was very much interested in the various Cosmogonies known in his time and had even collected some of them in his book, which formed a supplement to another earlier collection by a physician, 'Abdu'l-Malik of Bust relating to the beginning and the end of the Earth. It would repay to persue this subject in Prof. Valīdī's extracts and more completely in the original text of the *Kitābu't-Taḥdīd*. #### THE GEO-CENTRIC THEORY OF AL-BIRUNI In al-Qānān, al-Bīrūnī has upheld the Geo-centric theory, not because he was unaware of or belittled the Helio-centric theory, In fact time was not yet ripe for deciding this problem with absolute certainty. The Astronomers were still busy in observing and collecting their data for checking as well as correcting the former observations. It goes very much to his credit that al-Bīrūnī, as we know, throughout kept an open mind in such matters. We have to remember the difficulty in supporting the Helio-centric theory. It was the absence of any apparent changes of the distant stars' places in the Heavens or of the objects falling from the height on the bodies. Al-Bīrūnī did not believe in such a universal force. Nor did his illustrious contemporaries Ibnu'l-Haitham and Abū-Sahl-al-Qūhī. Like Einstein all these believed that gravitation is only the accelaration of the mass and is neither derived from outside nor parts the mass and would not deviate unless obstructed by some impediment. I take liberty to quote from al-Khāzīnī who wrote some 75 years after al-Bīrūnī, borrowing from the two abovementioned Muslim savants:— (الف) الثقل هو القوة التي بها يتحرك الجسم الثقيل الى مركز العالم (ب) و الجسم الثقيل هو السدى يتحرك بقوة ذاتية ابدا الى مركز العالم العلم فقط اعنى ان الثقيل هو الذى له قوة تحركه الى نقطة المركز و فى الجهة ابدا الستى فيها المركز ، و لا تحركه تلك القوة فى جهة غسير تلك الجهة . و تلك القوة هى لذاته لا مكتسبه من خارج وغير مفارقة له ، دام على غير المركز ، و متحركا بها ابدا ، ما لم يعقه عائق الى ان يصير الى مركز العالم (كتاب ميزان الحكمة ص١٦) Some day we may perhaps discover some unpublished work of al-Bīrūnī where in he may have dealt with the subject in detail. but we have sufficient indications in al-Qānūn that like our modern scientist, he did not at all believe in the objectivity of such force in the Universe. ## COSMOGONY In al-Qānūn, al-Bīrūnī has not hazarded any scientific hypothesis about the origins of the Universe, but in at-Taḥdīd we have a long discourse on this subject. Against the prevelent philosophical ideas of the Universe he has "I saw a kind of simple Astrolabe, invented by Abū-Sa'id-al Sijzi, not composed of the Northern and Southern sections of the Sky, and known as az-Zauraqī. I liked it immensely and praised him a great deal, as it rested on an independent foundation, the basis of its operation and construction lies in some people's belief that the motion lies in the Earth and not in the Sky. I swear that it is an uncertainty extremely difficult to resolve or by my life contradict. The Geometricians and Astronomers who depend merely on the lines resulting from measurements, have no means to contradict this theory. For in view of the fact that it is the same so far as the movement itself is concerned whether one ascribes it to the Earth or the Heavens. In both the cases it does not affect their science, but if it is possible to contradict this belief and resolve the uncertainty, then amongst all the philosophers it should be the concern of the physicists." It may be pointed out here that the question of the Earth's movement was being very keenly debated amongst the Muslim Astronomers in the 10 th and 11 th centuries of the Christian era, and the echoes of their discussion are still discernible in al-Qānān, where (pp. 50 & 51) al-Bīrūnī has tried to meet their objections. It is a pity that the works of az-Sijzī and others who held such views have not survived. It is certain that centuries before Copernicus, a few Muslim Astronomers had freely believed and worked on this hypothesis. Similarly, regarding gravitation some of al-Bīrūnī's contemporaries, and Newton centuries after believed in a universal force residing in matter and attracting the Newton's theory of Universal Gravitational pull remained undisputed for two centuries till it had to be modified in the light of better knowledge and substituted by Einstein's more advanced theories of Relativity, which have revolutionalized our ideas of Space, Time, Matter & Energy as conceived by former thinkers, so much so that in the present state of our knowledge we find Bertrand Russel remarking:— "In fact because all motion is relative we cannot distinguish between the hypothesis that the Earth goes round the Sun and the hypothesis that the Sun goes round the Earth. The two are merely different ways of describing some occurence like saying that A marries B or B marries A...... To Kepler and Galileo and their opponents, however, since they did not recognize the relativity of motion the question in debate appeared to be not one of convenience of description but of objective truth. "(Religion & Science, pp. 30-31). It should go to the everlasting credit of al-Bīrūnī that much in advance of his times he held an identical view and has expressed it in his al-Istī'āb:— وقد رأيتُ لأبي سعيد الستجزى اصطرلابا من نوع واحد بسيط غير مركتب من شمالي و جنوبي سمّاه الزّورق ، فاستحسنتُ م يحدا لاختراعه إيّاه على اصل قائم بذاته ، مستخرج ممّا يعتقده بعض النّاس من انّ الحركة الكُلّية المرئيّة الشرقيّة هي للا رض دون الفلك ، و لعمري هي شبهة عسرة التحليل صعبة المحق ، ليس للموّلين على الخطوط المساحيّة من نقضها شيء ، اعني بهم المهندسين و علما الهيئة ، الخطوط المساحيّة من نقضها شيء ، اعني بهم المهندسين و علما الهيئة ، على أنّ الحركة الكُليّة سواء كانت للا رض أو كانت للسّاء ، فانها في كلتا الحالتين غير قادحة في صناعتهم ، بل ان أمكن نقض هدذا في كلتا الحالتين غير قادحة في صناعتهم ، بل ان أمكن نقض هدذا الاعتقاد و تحليل هذه الشرية فذلك موكول الى الطبيعيين من الفلاسفة . ولم تشاهد ذلك قط لصخرة مثلا او مدرة ولم يشعر بقوة هذا الجذب انسان (ص٤٣) Further al-Bīrūnī considered that when a part of a mass at rest moves from one part to the other, it moves in a straight line, but on the other hand its movement round another body at rest is of a circular nature and represents a movement round a fixed point like the Earth's centre. و اذا نقل جزؤ من نوع ساكن الى مكان نوع آخر منه تحرك على استقامة نحو حيزه حركة عرضية و ما حول هذه الساكنات فى اطرافه فهو متحرك بحركات مستديرة مكانية حول الوسط الذى هو حقيقه السفل و مركز الارض (ص ٢١) Here too he is very much in agreement with Einstein, who held that curvature of the space-time in the neighbourhood of the Sun causes the planets to describe ellipses, whereas if all the masses were infinitely removed they would describe straight lines. No doubt al-Bīrūnī's conception of the Universe was more static than that of our modern astronomers who hold it as an altogether restless body full of movements and even expanding and contracting. Of course some of these most advanced theories can in our present state of knowledge be considered as more or less of tentative nature only. important matters to render a historical and comparative treatment and to disclose whatever he had personally observed or investigated as well as the complete processes by which the various results had been achieved. He had a special skill for devising instruments and equipped under his own supervision two observatories in his native land and one at Ghaznah. He has left quite the best book on Astrolabes named al-Isti'āb still extant in manuscripts. He invented for the cathedral mosque of Ghaznah a time-machine based on the Roman calendar, but was much annoyed by its rejection by the Imam on account of its being based on a non-Muslim calendar system. He remarks that the measurement of time was a purely secular matter and convenience and utility were the only considerations which should prevail. It would, however, be unjust to compare al-Qānūn with an Encyclopaedia of modern astronomy, as the former has a very limited range. It is only when we compare al-Bīrūnī's work with his predecessors and contemporaries, that we notice his advance on all sides. # AL-BIRUNI'S THEORY OF THE UNIVERSE al-Bīrūnī had some ideas very strikingly similar to those of Einstein and other modern scientists regarding the Universe as a whole. Like them he considered it to be situated on the outermost surface of a limited sphere. Like Einstein he also rejected the idea of the universal gravitation as an actual force on the ground of its being altogether opposed to experience: expresses his full
sense of gratitude to all of them and takes equal care to indicate his own share and views where occasion arises. He intended al-Qānūn to be an up-to-date Encyclopaedia of Astronomy supplanting all previous works ranging from Ptolemy's al Magest to al-Magestin'sh-Shāhī of his own teacher, Abū Naṣr. Almost a tradition had grown up of writing comprehensively, and there was another such work written by Abu'l-Wafā also. For those who have not studied his life and works it is not easy to realize the pains he had taken to master the entire subject before putting his pen to this book. He had already commented on all the outstanding works of his predecessors like Habash, al-Khwārazmī, al-Farghānī, al-Battānī, Abū Ma'shar and the Siddhantas of the Indian Astronomers. He had himself compiled formerly some more restricted and moderate sized texts on Astronomy, and even Astrology, in which he was thoroughly versed but does not appear to have implicit faith, though in the people's mind and in the court he was treated as the greatest astrologer of the world. Some five years earlier he had compiled for an educated lady of his native land named Raihanā his Kitābut-Tafhīm both in Arabic and Persian versions, treating of the elementary Mathematics, Astronomy and Astrology. There he remarks that most people consider the last subject as the real fruit of the entire science, although on his part he prefers to range himself on the side of the minority. i.e. those who think otherwise. In al-Qānūn al-Bīrūnī's method is to collect the best available information on every point and sometimes in # AL- $Q\bar{A}N\bar{U}NU'L$ - $MAS'\bar{U}DI$ In the face of great achievements we are apt to forget the spade work and other preparatory labours leading to such astonishing results. In the case of al-Bīrūnī they had involved a tremendous effort. There is hardly any portion in this book which had not already received from him ampler treatment elsewhere. It appears that with that rare insight, which is part of his genius, he had directed his studies in a most ordered manner. He had, for example, started with the subject of Calendars and Chronology on which he had written elaborately some 35 years before. Then he took up Trignometry and Shadows and on these two subjects we have two of his earlier works published by the Daira. On the Longitudes and Latitudes he wrote several books including al-Tahlīd, which deals much more in detail with topics like the Obliquity of the Ecliptic.On the measurements of the Earth, he has treated more fully in the same book and in a special treatise of 120 pages no longer available to us. From his early age he had begun to collect an extensive library of his own on his favourite subjects, and apparently possessed all the well known books on Astronomy written within the area extending from the Mediterranean Sea to the Bay of Bengal. These included all the extant Greek, Indian, and Muslim authors, except probably those belonging to the Western Muslim lands of Spain and Egypt. He is not one of those who are reluctant to acknowledge the debt of his predecessors. In the preface he what a balanced and mature mental critique he had developed, is not easy to imagine. He is a most independent scholar and no respector of personalities where truth is concerned. He was always very critical of Aristotle's scientific theories, and no less of Ptolemy's and pointd out boldy wherever he found that they had swerved from the right path. Thus al-Qānūn bears ample testimony to his independence of judgement. As soon as we open the book, we find him disputing and censuring some of Ptolemy's arguments in support of the very first propositions of this science. And if he accepts the rotundity of the Earth or the Heavens it is not for the reasons given by Ptolemy, which he rejects one after another, as being mere assumptions of an unscientific nature. Ptolemy thought that the sun and the moon and other heavenly bodies were of divine nature uncreated, everlasting, incorruptible and spherical in form and moving in circles, as the sphere and the circle were the most perfect form and more becoming for those bodies and their movements. For such fantastic views al-Bīrūnī had no patience, he ruled them out as altogether beyond science's sphere. He even contends the idea that the circle is better suited than the other forms like the elliptic. If al-Bīrūnī thinks that the Earth is not in motion and stands at the centre, he accepts and expounds the view for strictly natural and scientific reasons of his own. He is almost free from the theological or even metaphysical bias and works with an entirely independent mind rejecting all the supernatural or superstitious notions about Astronomy. Treatise Kitābu's-Saīdana dealing with simple drugs, some extracts from which have been published by Prof. Zekī Valīdī Togān of Istanbul in the Memoirs of the Archaeological Survey of India. No. 53 pp. 108-142. An imperfect translation of this work was made in India in the times of Iltutmish, the slave-king of Delhi, and the late Dr. Meyerhof left an incomplete edition of it which is now lying in the Institute Francaise, Cairo. We do not know the exact date of his death, but the traditional date, Friday, the 2nd. of Rajab, 440 A.H. (11 th. Sept. 1048 A.D.), after he was seventy-seven, is altogether fictitious. Unfortunately we have no precise knowledge in regard to the last 15 or 16 years of his life. From a contemporary jurist we have a report showing al-Bīrūnī's anxiety to learn something new even in the very throes of death. In "al-Taḥdīd", al-Bīrūnī has remarked that a scholar should try to learn at least the basic principles of every science, even though it might not be impossible to master all the details of a science. He wanted everybody to be a philosopher *i.e.* a true lover of wisdom in the real sense of the word. His method of study was to concentrate on one particular branch of science at one time and after exhausting all its contents to take up fresh studies, never losing sight of his main concern as a specialist while trying to make his own, what ever else he chose to deal with. Thus every book that he has written bears the distinct impress of his genius and in every science that he has undertaken to deal, he has left original contributions of his own. What a vast range of studies he commanded and paragingly of his Indian exploits. All this attitude of al-Bīrūnī changed with the great conqueror's death. The first thing he did was to take stock of all that he had learnt of India, while writing *Indica*. With Mas'ūd's accession to the throne the atmosphere became distinctly favourable for al-Bīrūnī. We know there was not much love lost between the father and the son. In the last days Mas'ūd had been actually labouring under Maḥmūd's displeasure. Mas'ūd was temperamentally a very different man from his father. Never so much successful in the affairs of state, he was quite a learned person and an enlightened patron of the sciences. In this very book we have al-Bīrūnī's own testimony that the Sultan was very good to him and it was only as a mark of sincere gratitude that he dedicated al-Qānūn to that ruler. From the internal evidences in the book, it appears that it was begun some time before 421A.H./1030 A.D. and completed sometime after 427 A.H./1035 A.D. ## HIS SUBSEQUENT LIFE He wrote some other minor works for the Sultan, but during Mas'ūd's reign his main occupation must have been the completion of the Qānūn. It appaers that as soon as he had finished it, he took up other works. For his successor Mawdūd, he wrote his famous "al-Jamāhir" on Gems and Precious Stones, which has also been published by the Dāira. This is reputed to be the best book written on the subject during the whole Muslim period. He wrote another book on Ethics for the same ruler. His best known work compiled after he was eighty, is a Medical others of his, are lost. We have his own list upto 427 A.H. (1035-36 A.D.), when he was already 65 but still full of zest for life and work in the future. He tells us that at the age of 60 he had fallen ill severely and recovered after much difficulty. No doubt all these Indian studies must have taxed him a great deal. Something of his method in pursuing the Indian studies is mentioned in the Indica, but not very explicitly. Some references in other works throw further light on the subject. At first he relied entirely on the interpreters, whom he tried to check by sheer tact. Later on he made appreciable progress in testing them by the texts themselves. By this time he must have gained sufficient knowledge of Sanskrit for his purpose. Further on, he advanced far enough to translate by himself from Sanskrit into Arabic and vice-versa. But of this later stage we have not much left to form our final judgement. collected a whole library of Indian books He had from far and wide. It is a matter of great regret for us also that on account of political strife and warfare between his own people and the Indians, he was precluded from visiting the real centres of Indian learning like Benares and Kashmir. What interest Maḥmūd himself had in these studies is not quite clear? Evidently through al-Bīrūnī's influence Maḥmūd got some of his coins struck in Sanskrit legends. But al-Bīrūnī was never in sympathy with Mahmūd's ways in India, and we do not know as yet of a single work which he dedicated to the conqueror. On the other hand a well known passage in the *Indica* actually speaks dis- But by far the most notable event of his life in those days was his study of Sanskrit and extensive researches on India, its people, literatures, and sciences, specially mathematicas and astronomy. Out of a number of his profound studies in this particular line, including a very exhaustive work dealing with Indian Astronomy, which are all lost, we are still left the most valuable Kitābu'l-Hind, the unique testimony of his arduous labours on India so well known throughout the
world. By his vast Indian studies the later generations were so much impressed that they believed that he had travelled in India for forty years. But after a long study of the subject, I am fully convinced that most of his studies were carried out in Ghaznah with the help of the Indian scholars living there. There is no doubt that he travelled in some parts of the Western Punjab up to Multan. But beyond that he never went and knew of Sindh, like other parts of India, only from the account of other people who had travelled in or, belonged to those regions. How many years did he actually devote to these Indian studies? It may surprise many, but it is another proof of his great genius, that before writing his *Indica* he does not appear to have given more than four or five years of his time to these exacting Indian studies. But he never ceased to continue his work in this special field along with his other studies, for some five years after we still find him keen on finishing his books and translations on Indian subjects. What other books he was actually able to write on India even after this we do not know; for no records are available and such books, like so many dimensions. Next year we find him wandering in the vicinities of Kābul and Qandhār carrying out his researches for latitudes in those parts. He met Mahmud somewhere on the way, while the latter was returning after his famous expedition to Mathura and Qannauj and showed to al-Bīrūnī the unique precious stone weighing some 450 Mithgals taken from a temple in Mathura. al-Bīrūnī, who has described it in his al-Jamāhir was not much impressed by its quality and Mahmud discerning the fact inmediately withdrew it from al-Bīrūnī's view just to keep up the much exaggerated notions of its value in the people's minds. This curious incident very well illustrates the relations that subsisted between these two great men. al-Bīrūnī was forgiven and allowed to continue his work and establish an observatory in Ghaznah. He was even consulted now and then on scientific matters, and probably highly valued as an astrologer, but he was never totally reconciled to his fate at that court. In his "al-Tahdīd", an autograph Ms, or at least contemporaneous copy of which exists in Istanbul (dated 416 A.H. 1025 A.D.), we find him most disconsolate, but not altogether despairing of resuming his scientific work which he had left incomplete at home and regaining all the materials including a hemisphere on which he had been marking all the longitudes and latitudes of the various places ascertained by his own exertions. Of the several works he wrote at Ghaznah, we have fortunately recovered two mathematical treatises Istikhrāju'l - Autār and Ifrādu'l-Miqāl written in 413 A.H. (1022 A.D.), both published by the Dāiratu'l - Ma'ārif, like several other tracts connected with al-Bīrūnī. major work al-Athāru'l-Bāqiyya, which deals with the calendars and chronology of all the peoples known to him. Qābūs held al-Bīrūnī in very high esteem and desired him to share the ruling power. But al-Bīrūnī left Qābūs as he did not like his patron's tyrannical nature. Previous to his visit to this court al-Bīrūnī had stayed for a short time in Raiy and met al-Khujandī, an eminent astronomer of those parts and the inventor of the sextant known as sudsu'l-Fākhir, for which al-Bīrūnī has expressed much admiration. Some time in 394 A.H. (1003-4 A.D.) he returned home at the invitation of 'Alī b. Ma'mūn who had succeded his father in 388A.H.(998A.D.). Time had healed the old wounds and al Bīrūnī found in 'Alī and his Vazir Abu'l-Husain Muhammad b. Ahmad al-Suhaili more humane and enlightened patrons at home, where later on, the third of the line, M'amun, proved to be a great lover of learning and in later days appears to have appointed al-Bīrūnī his Minister, till after that king's murder by the rebels in the army and the fall of his short lived dynasty in 407 A.H. (1016 A.D.). Mahmūd invaded and annexed Khwarazm in 408 A.H.(1017A.D.). al-Bīrūnī set up an observatory in the royal palace and was particularly busy in those days in his studies in astronomical geography. This was probably the most unhappy moment in his life. Not only was his scientific work once again disturbed and his most loving patron dead, but he was also himself carried away by the conqueror to Ghaznah and for a short period even kept as a political detenue in the fort of Nandna, where, however he was able to carry out his measurements of the Earth's #### HIS LIFE He was born in the fore-noon of Thursday, the 3rd of Zilhij, 362 A.H. (4th September, 973 A.D.) of an unknown family, in the outskirts of Kath, the old capital of Khwarazm, and most probably was left an orphan at a very early age. He was brought up and educated by Abū Nașr Manșūr b. 'Alī b. 'Irāq, a distinguished member of the ruling family of Khwarazm and a leading mathematician and astronomer of his time, who by oral and written instruction instilled in al-Bīrūnī an insatiable love for scientific studies. It was Abū Naṣr who put al-Bīrūnī in contact with the former's own veteran teacher, the famous astronomer, Abu'l-Wafā al-Būzjānī, then living in Baghdad, for simultaneous observations of solar eclipses, for determining the longitudes in Khwarazm. In his unpublished "al-Taḥdīd", al-Bīrūnī says that he almost lost his eyesight by repeated solar observations in the observatory he had set up for himself in a small village near Kath. He began his literary career very early. His activity was unfortunately disturbed towards the end of 385 A.H. (995 A.D.) by the war between the two rival chiefs of his country, M'amūn of Jurjānia and Abū' Abdillah Khwārazmshāh of Kath, resulting in the latter's murder and the fall of his ancient dynasty. al-Bīrūnī did not stay there for long after the event and shortly after 387 A.H. (997 A.D.) left home in search of some suitable patron and for a time found one in Shamsu'l-Ma'ālī Qābūs b. Washmgir, the Ziyarid ruler of the neighbouring country of Jurjan, and himself a distinguished poet, literateur and lover of learning, to whom al-Bīrūnī dedicated his first of observations or opinions existed. As we proceed further al-Bīrūnī's efforts in this direction by carrying out his own independent researches on such points will be noticed markedly. The fourth and fifth centuries of the Hijrah (X & XI centuries of the Christian era) were marked by conflicting political divisions in the Muslim world. The cultural contacts, however, did not altogether cease amongst the various parts and what was written in one part was often after a short while available in the other parts, except perhaps the extreme East or the West. From al-Bīrūnī's books it appears that he was not cognizant of the researches in the Fatimid land of Egypt, and the Umayyad land of Spain. No references to his contemporaries, Ibn Yūnus and Ibnu'l-Haitham in Egypt, or Maslamah and Ibnu'l-Samh in Spain are found. By this time these countries had also improved in their scientific studies, but the Eastern lands had a much earlier start in this respect. By reading al-Qānūnu'l-Mas'ūdī one can have a glimpse of that spirit of scientific adventure that had been infused in these countries and the rivalry that existed amongst the several states. One finds, references to some of these distinguished astronomers and their chain of observations from the metropolis of the Eastern Caliphate, Baghdad, and the headquarters of the Buwaihids to semi-independent states at Isfahan, Hamdan and Raiy to Khwarazm and Ghaznah and other important places. al-Bīrūnī had a knowledge of the results achieved in all these centres in the East and kept himself in touch with the chief organisers of those establishments. would reveal a very fascinating story of the achievements of al-Ma'mūn's scientists, particularly the astronomers of the age. We know that he had set up at least two wellequipped centres for astronomical observations and researches in Baghdad and Damascus under a band of distinguished astronomers. He had almost a passion for this science and sought verifications and necessary corrections on every particular point. Let us take one instance. He wanted to ascertain the actual dimensions of the earth and got a single degree measured more than once at several places. But his insatiable zeal for research is vividly illustrated by a curious anecdote mentioned in an unpublished work of al-Bīrūnī, where he relates that towards the end of his life in the course of his invasion of the Byzantine territory, while al-Ma'mūn happened to pass by a mountain adjacent to the sea, he ordered one of his astronomers, Sind b. 'Alī, to ascertain the earth's dimensions by a trignometrical method, which was later successfully repeated by al-Bīrūnī at Nandna in India. A glance at the chapter of this book dealing with the Obliquity of the Ecliptic (الميل الأعظم) will be sufficient to show that a large number of independent observations, as against a couple only of the times of Greek astronomers, were carried out in the lands of the Eastern Caliphate to verify the actual degree. al-Bīrūnī himself carried out at least three of his own, two in his homeland and the last at Ghaznah. The Muslim astronomers tried to reinvestigate almost the entire field of astronomy and, it appears, specially directed their attention to those parts where differences This is hardly the place to give a fuller account of all his achievements. Something to that effect has already been attempted by the present writer in his Life of al-Bīrūnī and some other writings including a lecture on "al-Bīrūnī's Scientific Achievements" delivered in 1952 in the Iran Society of Calcutta. Here I would like to confine myself to a brief account of al-Bīrūnī's life and contributions in relation to the work in hand. Like all great men al-Bīrūnī was a product of his age and his greatness lies in his being much ahead of his own times. His age was particularly marked for its keen interest in
astronomy. Its history, of which, at present, we have some glimpses only, has got to be written completely. That history goes back to the beginning of the 'Abbāsid Caliphate in the first half of the second century of the Hijrah and received its greatest impetus at the hands of the most enlightened Muslim sovereign, al-Ma'mūn. The Muslims started with some translations of the Indian and Persian works on astronomy and then with the translations of the Greek astronomers, including Ptolemy, whose magnum opus Syntaxis, better known as Al-Magest, occupied a special position in their minds. Most of those translations and original works of al-Ma'mūn's times are lost. We know what happened to the scores of books in Baghdad at the hands of the Mongol hordes of Hūlākū, and much of what was left, was eventually destroyed later by the ravages of time and subsequent wars in the Muslim countries. Some glimpses of these we have in the works of authors like al-Bīrūnī. A searching study ### THE MILIEU A very early tradition tells us that when al-Bīrūnī dedicated his magnum opus to Sulṭān Mas'ūd of Ghaznah, after whom the work is named, the Sulṭān in his turn rewarded him with a camel's load of silver, but the savant thankfully returned it, saying that he did not need the money, nor loved money for its own sake. Truly no amount of riches could match the wealth of knowledge that this really great work contains. With the publication of al-Qānūnu'l-Mas'ūdī, the historians of astronomy would, as never before, be in a position to appreciate the actual achievements of the Muslim astronomers, as well as al-Bīrūnī's theoretical and practical contributions to his favourite subject. His times, talents and experience were all perfectly suited for the work in which he undertook to render a complete and up-to-date account of astronomy, when it had reached its climax amongst the Muslims. He had, at his disposal, about half a century's incessant personal labours as well as more than two centuries of continuous labours of other Muslim astronomers. In the *Preface* to this book, he says that from the very outset he had devoted himself exclusively to this department of knowledge, and did not count his achievement in so many other fields of learning, almost encyclopaedic in its range. For no other scholar ever before or after him has combined the study of all that was available in his times from the Indian, Greek and Muslim sources and at the same time left behind him so many original contributions of his own in numerous spheres of learning. ## AL-BĪRŪNĪ AND HIS MAGNUM OPUS Al-QĀNŪN U'L-MAS'UDĪ والله اسئل ان يوفق للصواب و يعين على درك الحق ، و يسهّل سبيله و ينير طرقه ، و يرفع الموانع عن نيل المطالب المحمودة ، بمنّه و سعة جوده ، انّه على ما يشاء قدير . (كتاب التحديد ص ه ٤) "And I pray for God's favour and spacious bounty to make me fit for adopting the right course and help me in perceiving and realizing the truth, and facilitate its pursuit and enlighten its courses, and remove all impediments in achieving noble objects. He is all powerful to do as He pleases." (From the autograph Ms. dated A.H. 416, of al-Bīrūni's Kitābu't-Taḥdid p. 45) فاً ننى لا آبى قبول الحق من اى معدن وجدته . (كتاب التحديد ص ١٠٤) "I do not scorn to accept truth from whatever source I can find it." (ldem p. 104) We end with a quotation from E. Sachau's preface to the English edition of Ta'rīkh u'l-Hind published in 1910:— "As far as the present state of research allows one to judge, the work of Albiruni has not been continued. In astronomy he seems by his Canon Masudicus to represent the height, and at the same time the end, of the independent development of this science among the Arabs. But numerous scholars toiled on in his wake, whilst in the study of India, and for the translation of the standard works of Sanskrit literature, he never had a successor before the days of the Emperor Akbar." Whilst joining Sachau in his general commendation of the eminent medieval scholar, we have to modify somewhat his opinion regarding al-Bīrūnī's achievements in astronomy, without however detracting appreciably from the high excellence of al-Bīrūnī's learning as a whole. Dated 9th January 1956, University of Exeter, England H.J.J. WINTER ⁽¹⁾ E. Sachau. "Albīrūni's India" I, XLIII. London, 1910. theory is almost complete. But in other directions, as for instance, in the manner of recording astronomical data, in certain problems of spherical trigonometry, and in the knowledge of the calendars of the ancient peoples of the East, he advances the cause of science. It is true that sines occur as early as c. 1007 in the Hakemite Tables of Ibn Yūnus, but al-Bīrūnī, with his unique knowledge of Hindu sources, both explained their value and extended their use. Though the scope of his work relating to the sphere is not comparable with that in the treatise Shakl u'l-gatta of Nāṣir al-Dīn at-Tūsī, it is by no means insignificant, for he exhibits versatility in his application of the sine relationship for spherical triangles. Moreover, he was able to use the method of orthographic projection. As for chronology, al-Bīrūnī's al-Āthāru'l-Bāqiya 1 (c.1000 A.D., 390/1 A.H.), with all its technical and historical detail of the various methods for computation of time, is a primary source; and since al-Qānūn u'l-Mas'ūdī draws upon it in certain respect we must attach considerable importance also to the latter. Al-Bīrūnī is always liable to introduce some new fact. Thus his list of names of the months of the Sogdians is the scanty remnant of a lost Iranian dialect and therefore of considerable interest to philologists. Upon the author's accuracy we can generally rely. In spite of occasional lapses, e.g. in the interpretation of experimental results or in poornees of expression, he had great faith in his own instruments and methods, and originality was seldom lacking.. ^{1.} E. Sachau Chronologie Orientalischer Volker, Leipzig, 1878. English edition, London, 1879. cated mathematical section using Euclid, VI, and ending with tables of anomalies for the five planets and the calculation of their longitudes. Jupiter and Saturn were investigated, with tables of anomalies, in Book XI. General planetary theory, an attempt to account for the apparent irregularities of motion, based largely upon the pure geometry of circles and chords (Euclid III, VI), occupies the whole of the last two Books. Ptolemy investigates the extent of recession, or slowing down in a part of the orbit, for each planet in turn also the greatest elongation of Mercury and Venus, obliquity conditions and the path in latitude, and helical rising and setting. Difficulties which could only be met by more corrections and an increase in the number of circles, as in Ptolemy's general theory, are the result of the adherence to a geocentric theory and reveal at once both the ingenuity and the limitation of the Greek mathematical mind. In conclusion, we summarise briefly the real significance of al-Qānūn u'l-Mas'ūdi. Encyclopaedic in character, it is representative of those great medieval treatises, written by such scholars as al-Bīrūnī and Ibn Sīnā, which by the power of synthesis and zeal for completeness in their authors, remain for historians of science a mirror of all the knowledge of their day. In the nature of their vastness, compilation overshadows originality, and one has to search, as in al-Qānūn u'l-Mas'ūdī, amongst the accumulated achievements of past generations and earlier races to find whether the author has himself contributed any new knowledge. With al-Bīrūnī the debt to Ptolemy, and in turn Hipparchus, within the field of general planetary cannot occur, deduces the diameters of luminous and illuminated bodies and of the shadows of the latter, and has several chapters devoted to such subject as the times of rising and setting, twilight, the "mansions" of the moon, and the lunar calendar. The last three Books of al-Qānūn u'l-Mas'ūdī are concerned almost entirely with the motions of the spheres of the five known planets, their rising and setting, periods and conjunctions, and their positions with respect to the "mansions" of the moon according to the Arabs and Hindus; and especially with the way in which Ptolemy accounted for their motions in the final five Books (IX-XIII) of Almagest. al-Bīrūnī, with his leanings towards astrology, was clearly interested in knowing the time of arrival of a particular planet at a given position in the zodiac; so we find him, in sections 7 and 8 of his last Book, writing about the fortunes of children in terms of the years and months and days of their birth. Owing to the tremendous influence and the extensive mathematical investigation of Ptolemy's planetary theory it is worth re-stating some of those major features which could scarcely fail to determine al-Bīrūnī's approach. In Almagest Book IX, the Greek astronomer, after setting up tables for the mean path of the five planets in longitude and anomaly, discussed the orbit of Mercury, proved that whilst in its circular path the planet could twice attain its greatest elongation, and calculated the numerical values for the epicycle of the planet. A similar treatment followed in Book X for the apogee, epicycle, period, and excentricity of the planets Venus and Mars:- a compliconceptions. The earlier part of Book VI deals with the latitude of Ghaznah, and of Alexandria according to Hipparchus; whilst there is a discourse on intersecting orbits with reference to the zodiac. Later, this discourse leads on to a study of the orbit of the sun. Ptolemy in *Almagest* Book III, had explained the excentric and epicyclic theories, the epoch and mean path of the sun the anomaly of the sun (with a table), solar days and the solar year. This investigation had been well conducted by Ptolemy, and we find that al-Bīrūnī has closely followed him. Motion of the moon is the subject which occupies almost the whole of the next Book. Here the author deals with the path of the moon
in the zodiac, its phases, the discrepancies between its observed and calculated positions, and the first and second anomalies. Again, the elaborate treatment of Ptolemy in Books IV and V of Almagest, in which he not only applies corrections to the moon's motion for longitude and anomaly, latitude and epoch, but compiles a table for the complete double anomaly, and adds further chapters on parallax and on the moon in syzygy:— this is indeed so full that al-Bīrūnī could hardly hope, whilst retaining a geocentric system of the universe, to give a better account. Following once more the general plan of Ptolemy's Book VI, al-Bīrūnī proceeds in his own Book VIII to deal fully with the characteristics of lunar and solar eclipses both from the standpoint of orbital motion and the optical questions of light intensity and shadow. He discusses the limiting conditions beyond which eclipses of the sun as observed from Ghaznah was also compiled; a similar one had been recorded for Baghdad by Ḥabash al-Ḥāsib (c. 870). If the sun's latitude reckoned from Aries is Lambda, and in relation to Cancer is Lambda-90°, the corresponding sun's declination is Delta, and the obliquity of the ecliptic is Epsilon, then Sin Delta - Sin Epsilon. Sin Lambda Also since Delta and h are related by the equation h 90°-Phi Plus Delta the approximate meridian height h for any day may be calculated and compared with the direct measurement made by quadrant or octant. In addition, al-Bīrūnī discussed in this fourth book the nature of the obliquity of the ecliptic, and the method suggested by Muhammad ibn Ṣabbāḥ for its determination in which the assumption of the sun's passage through equal distances in equal times al-Bīrūnī shows to be false. He also describes the principal types of alidade, and here he reveals his dependence upon Ptolemy. In book V al-Bīrūnī extends his mathematical discussion to the problems of longitude. He writes especially of the longitudes of cities in terms of the distances between them and in relation to the occurrence of solar eclipses, and effects trigonometrical calculations such as the determination of the distance between two cities of known longitude and latitude. There is also an important chapter on the direction of the qibla. In concluding this book, the author deals with tables of latitude and longitude for the location of cities on the earth, and describes the regions of the spherical universe as a whole in terms of these two and vertical shadows, m and n, cast by a gnomon of length q are given as $$m \quad q \quad cot \quad h \quad , \quad n \quad q \quad tan \quad h$$ where h is the angle of elevation, or (when the shadow is along the mid-day line) the meridian height, of the sun. This next book IV is a long treatise of 26 sections in which (1) this basic theory of the gnomon is fully elaborated and applied by al-Bīrūnī and in which (2) trigonometrical relationships are developed for the sphere. Thus problems of geographical latitude are particularly prominent since they involve both (1) and (2). By considering a meridian section of the celestial sphere in which the horizon, zenith, celestial equator, and N pole of the heavens are shewn, al-Bīrūnī was able, through the maximum and minimum heights, h_1 and h_2 , of the path of a circumpolar star around the celestial axis (or through the "Zenith heights" of the Sun when in positions known with respect to certain constellations), to determine the latitude of the place of observation in the form Phi $$\frac{h_1 Plus h_2}{2}$$ This expression, written as Phi h^1 Plus 1/2 (h_2-h_1) , actually occurs as early as al-Battanī (c.929 A.D.); and again, $h_1-1/2$ (h_1-h_2) is to be found in the work entitled On the Use of the Astrolabe by 'Alī ibn 'Isa (Māhān), who flourished still earlier, c.850 A.D. What is especially significant about al-Bīrūnī's treatise in his interpretation of the implications of this equation and his good result $(33^{\circ} 35^{\circ})$ for the latitude of Ghaznah. A table of meridian heights the whole chord (jiba). The main treatment is that of the sides of circumscribed polygons, al-Bīrūnī establishing these sides as the fundamental units from which other chords might be evaluated; thus, he derived the chord of a particular arc in the case where the chord of the supplementary arc is known; the chord of the double arc given the chord of the single arc and vice versa; so, by a process of halving, the chord of the quarter arc, etc.; also, the chord corresponding to the sum and difference of two known arcs. This investigation was extended to include the determination of the chord of 10, the properties of the nonagon, and the relation between the circumference and diameter of the circle by successive approximation. al-Bīrūnī's value of pi was slightly greater than the accepted 3.1466 from Greek and Hindu sources. Superseding now the Greek method of reckoning by chords, al Bīrūnī calculated the sine (al-jaib) of an angle from the corresponding arc, and vice versa, and treated similarly the sinus versus (jaib mankūs); his sine table was based on intervals of 151 whereas that of the Surya Siddhanta had been in intervals of 30451. An important application of plane trigonometry to the gnomon (miqyās) enabled al-Bīrūnī to measure the shadow in terms of the length of the gnomon, to define the tangent and co-tangent and angular elevation, and to investigate elevation by movement of shadow. Tables of shadows (Zill-i-ma'kūs), corresponding to tangent tables, could then be constructed. Such tables are to be found later in the Zīj-i-Īlkhānī of Nāṣir al-Dīn al-Ṭūsī and the Samarqand Tables, Zīj-i-Ulugh Beg. The basic relationships for the horizontal of the Arabs, Jews, Hindus, Romans, Nestorians, Copts Persians, and Sogdians in respect of the division of the year, al-Bīrūnī now deals in detail with the three systems of chronology adopted by Muslims, Greeks, and Persians, their similarities and the conversion of dates between them, obscurities and errors, and the comparison of these three with Hindu chronology. Next the periods of fasting and the great days of the feasts are considered in respect of Judaism, Christianity, Islam, and the ancient Persian religion. Finally, a chronological survey is made through Chaldaean, Assyrian, Babylonian, Medean, Persian, Alexandrian, Ptolemaic, Roman and Byzantine times to Muhammad, al-hi jra, and the Caliphs. This work is similar to that in al-Kitāb al-Athār, and on the question of Hindu eras it reveals no progress beyond what is also mentioned in Ta'rikh al-Hind. In fact, al-Bīrūnī mixes up the era of the astronomers, as in the Khandakhādyka of Brahmagupta, with the Guptakala. Book three is of an entirely different character. It provides the fundamental plane geometry and trigonometry required for subsequent chapters and deals principally with the reckoning of angles. Its importance rests in (1) the use of the sine and (2) the trigonometrical treatment of the shadow of the gnomon. There is also an interesting reference to terminology in which al-Bīrūnī says that the word zījāt (tables) derives from al-ziq (the measure of a chord), which may be traced to a Persian word which he writes (i) again, jīvabā (half-chord) is called in India jībārd, but since the half-chord is widely used there instead of the chord it has taken the name of made the customary assumption of the influence of the planets and the zodiacal signs upon the destinies of men. An Arabic translation with commentary of Plato's Timaeos found an honoured place in his library. In the introductory Book al-Bīrūnī deals with the nature of the universe and with the system of planetary spheres. the division of night and day and of the year into months and days by different races, and the solar and Lunar years. These general conceptions are essentially those of Ptolemy. However, on the possibility of a motion of translation of the earth, al-Bīrūnī's objective outlook, with its realization of the relativity of astronomical motions, seems to have led him to a position of reserve, for in the Ta'rikh al-Hind there are to be found these words:-"Besides, the rotation of the earth does in no way impair the value of astronomy, as all appearances of an astronomic character can quite as well be explained according to this theory as to the other [with the earth immovable]. There are, however, other reasons which make it impossible. This question is most difficult to solve. The most prominent of both modern and ancient astronomers have deeply studied the question of the moving of the earth, and tried to refute it. We, too, have composed a book on the subject called Miftah 'Ilm-al-Hai'a (Key to the Science of Astronomy), in which we think we have surpassed our predecessors, if not in the words, at all events in the matter." I Calendaric problems occupy the whole of the second book. Following upon his earlier reference to the practices ⁽¹⁾ Ibid 1, 267-277. this requires further research. travels had taught him; indeed, as with most Islamic astronomers, he shows overwhelming support for Greek methods, preferring the lucid deductive argument and the geometrical representation. Of critical independent outlook, he did not merely follow tradition in this, being in fact anti-Arab in disposition and for his times, extremely tolerant of the intellectual outlook of other nations. It was simply that he preferred the directness of Greek methods to the subtler analytical ideas of the Hindus, which usually had philosophical and religious implications. Thus we find his work lucid and orderly, with each section usually divided into three parts - a short general introduction, a statement of the problem under discussion, and an elaboration of his own. In this last he attempts to get a better understanding and to arrive at a conclusion, often by comparison with Greek and Hindu evidence on the subject. He uses the manuscripts of earlier writers with the utmost discretion, exposing errors of
both authors and scribes. We find a special regard for the astronomical investigations of Ptolemy. As for al-Bīrūnī's knowledge of the geometry of the sphere, whilst it reveals a thorough acquaintance with the Greek contribution, it is in no way a complete anticipation of the great treatise on spherical trigonometry which was to appear some two hundred years later from the hand of Nasir al-Din at-Tūsī. Finally, one should not ignore the medieval mind in al-Birūni when praising the objectivity of his outlook in regard to scientific problems. He undertook a lengthy study of Hindu and Greek astrology, being especially influenced by the latter, and undoubtedly bygone better times;" but in the preface to al-Qānān u'l-Mas'ūdī where high-sounding phrases extol the virtues of the new ruler, a feeling of gratitude permeates his words—" Is it not he who has enabled me for the rest of my life to devote myself entirely to the service of science.....". The eleven books of this encyclopaedia deal respectively with fundamental definitions, calendars of different races, properties of the circle, the mathematical astronomy of the sun and constellations and its use in the study of night and day and of the latitudes of cities, the further mathematical treatment of latitude and longitude, motion of the sun in the zodiac, motion of the moon, eclipses of the sun and moon, the fixed stars, the motions of the five planets in their spheres, and finally, motion of a planet in the zodiac and its astrological significance. Embracing as it does the whole field of observational astronomy and the measurement of time, together with the mathematics of the Ptolemaic system, a work of these dimensions cannot be discussed fully within a short space for it raises many interesting questions, but it is hoped in this notice to indicate its main features and to emphasize its significant place in the history of science. To realise the personal background of the author in this connection is important. He had studied and mastered both Greek and Hindu astronomy, though after he had returned and settled in Ghaznah he does not seem to have made any progress beyond what his Indian ⁽¹⁾ E. Sachau. Alberuni's India, 1, 152. London, 1910. and Mas'ūd. It was during their invasions of India that al-Bīrūnī was able by accompanying them to gain at first hand his deep understanding of Hindu thought. He died at Ghaznah on 2nd Rajab, 440 A.H. (1048 A.D.). Amongst the many important writings of al-Bīrūnī are al-Qānūn-u'l-Mas'ūdī, the subject of the present notice, and three others which inevitably enter into our discussion of it, namely, al-Kitāh al-Athār al-Bāqiyya (Vestiges of the Past, or Chronology of Ancient Nations), $T\bar{a}'r\bar{\imath}kh$ al-Hind (History of India,) C. 1030 A.D. and al-Tafhīm li-Awā'il Sinā'ati't-Tanjīm. Al-Qānūn u'l-Mas'ūdī is a lengthy and important encyclopaedia of astronomy dedicated to the Sultan Mas'ūd. The preface relates how Mas'ūd overcame his opponents in the struggle for succession, and the work itself consists of eleven books, subdivided into chapters which are still further sectionized. It was written in Ghaznah between 421 A.H., when Mas'ūd came to power. and 427 A.H., when it appears in the list of completed works set down by the author himself. After the stormy reign of Mahmūd, al-Birūni was sincerely thankful to be able to settle quietly to the writing of what is probably his greatest work, for Mas'ūd, despite his other failings. gave the astronomer-astrologer the much-needed respite from material cares. There is no doubt that al-Bīrūnī had an uneasy time during the reign of Mahmud and had little to admire this sovereign, for he says of this period, ".... it is quite impossible that a new science or any new kind of research should arise in our days. What we have of sciences is nothing but the scanty remains of # THE PLACE OF THE QANŪN-1-MAS'ŪDI IN THE HISTORY OF SCIENCE The second half of the eleventh century A.D. is highly significant in the history of mankind as period of great intellectual activity in Persia. Amidst this flowering of the Persian genius the achievements of Abū Raihān Muḥammad ibn Aḥmad al-Bīrūnī (973–1048 A.D.) bear witness to a profound erudition and a generous humanity. The spirit of this age may be said to dwell in the critical al-Bīrūnī, the philosophical Ibn Sīnā, and the poet Firdausī; whilst of the first-named Professor Sarton has written: "Traveller, philosopher, mathematician, astronomer, geographer, encyclopaedist. One of the very greatest scientists of Islam, and all considered, one of the greatest of all times. His critical spirit, toleration, love of truth, and intellectual courage were almost without parallel in medieval times". Born in Khwārazm in 362 A.H. our celebrated author passed his adult life first at the courts of Qābūs b. Washmagīr, Prince of Jurjān, and of Abu'l-'Abbās Ma'mūn b. Ma'mūn; but soon after the assassination of the latter in 407 A.H. 1016 A.D, he went to Ghaznah, where he came under the patronage of the Ghaznavi Sultans Mahmud ^{1.} G. Sarton, Introduction to the History of Science I, 707. Baltimore, 1927. VII. Mīqāt 866, Dāru'l-Kutubu'l-Miṣriyyah, Cairo, is the Seventh dated de-luxe copy of the work written evidently for a great Eastern potentate whose name has purposely been obeliterated, but from the date and other indications, it is obvious that it has been prepared for the treasury of one of the rulers of Ḥisn Kīfa and 'Āmid during the rule of the Ayyūbids in Sinjar and Naṣībīn. It once belonged to the Tal'at Pasha Library and has since been transferred in 1918 to the National Library of Egypt, where the Chief-editor had the good fortune of examining it in detail and adding it to the list of manuscripts utilised by him during the preparation of the monumental edition of the Qānūn-i-Mas'ūdī. It is transcribed by one astronomer-calligrapher Muḥammad bin Mas'ūd as-Sinjārī al-Munajjim in JumadaII 673 A.H./ December 1274 A.D., sixteen years after the fall the 'Abbasid Caliphate. It contains 268 folios, its size is 11" × 14½", 19 lines per page, written in beautiful bold Naskh with rubrications golden frontispiece and highly decorated semi-kufic headings and titles, and profusely vocalised. The tables and diagrams have also been carefully and neatly drawn and preserved. The Chief-editor has availed this Ms. through the kindness of the authorities of the Egyptian National Library, Cairo in 1951 during his second visit to Egypt. This is the Seventh dated Ms. of this work existing in the world. It is designated as M Misr and f in our edition and foot-notes. Thus seven de-luxe royal copies transcribed by famous scribes have been utilised in the standardisation of this text. This Ms. stands fifth in the chronological order of our survey, and has proved very valuable during our collation of the text and for verification of Max Krause's transcript. For the sake of reference, we have denoted it with the letter B Berlin and — in our edition and footnofes. VI. Or. 1997, British Museum, bearing Sir Henry Miers Elliot's Library seal and number 440, is also a de-luxe Codex which once belonged to the Mughal Emperors, 'Alamgīr and Farrukh-Siyar. It contains the seals of several officials of the Mughal Emperors, inspection notes and Imperial endorsements, one of them bears the date: 25 Urdī-bihist 1064 Faṣlī. So then this Ms. may have entered into the Royal Library in the days of the Emperor Shāh-jahān (ruled 1621-58 A.D). This Ms. has been described in full detail by Rieu in his Supplement to the Catalogue of the Arabic Mss. in the British Museum, No. 756. on p. 513. It is a complete text, transcribed at Baghdad in 570 A.H./1174 A.D. i.e., eight years after the copying of the previous Ms. (No.V) described above. It has been collated carefully in 571 A.H./1175 A.D. Hence it is the Sixth dated Manuscript of this work that is known to exist in the world. It contains 262 folios. Its size is 13½" × 9"red morocco leather-binding with gold medallions in the centre and sides; 31 lines per page of 7" long, on brownish Khan-Baligh paper, in bold Naskh semi-cursive, but very legible style dark tan ink, parlty, or sparing vocalised sometimes without dots, but in a masterly hand with scholarly mannerism of writing e.g the projection of the letter Alif to the bottom to give it a tail shape. This Ms. has been designated by us as" L" for London, and J in our foot-notes. borne by the circular seal of "Fāzil Khān, the servant of the Emperor Shāhjahān dated 1059 A.H."/1649 A.D. Since then, it had remained in India as a prized possession of the Mughal Emperors in their special archives and later belonged to the Imperial Library, Calcutta. Thence lent to the Lytton Library, Muslim University, Aligarh from where it was stolen and taken to State Library, Berlin, about 1927. After the Second World War, this Ms. along with others has been deposited in the custody of Tubingen University Library. In 1951 the Chief-editor had the good fortune of examining it thoroughly for the first time, and to acquire its photostats and check it again with the transcript of Dr. Max Krause, before finally editing the text and printing it at the Dāira. The frontispiece and title of the work are in Kūfic ornamental letters, in gold and rubrications. It contains 239 folios of large folio size, 33 lines per page, written on brownish Khan-Baligh paper, in beautiful Naskh, vocalised in parts, in tan-coloured ink still bright and legible. The tables and diagrams have also been carefully drawn and the whole text is excellently preserved, except for a few folios 121-130 which have been replaced in a later hand to complete the missing folios of the original transcript. The Ms. appears to have been collated with another original copy by the scribe himself. Hence the authenticity of the text is all the more confirmed. It has not been catalogued any where as yet. After the author's "Introduction" to the book comes the list of contents of
the II Maqālas, then the actual text. At the end of each Maqāla, a short colophon is given by the scribe, showing the progress of his trascription till he reaches the end of IIth Maqāla or the end of the book. The identity of this Ms. can be easily ascertained from the internal evidence found in the Ms. and from the external features described by persons who have used it in Aligarh. The date of colophon *i.e.* Rabi 'II, 562 A.H.=February 1167 A.D. is a conclusive proof, as there is no other Ms. of this work known to scholars so far bearing this date. The description given by Mr. S. H. Baranī in his article on "Muslim Researches in Geodesy" in the Al-Bīrūnī Commemoration Volume on page 19 also confirms this fact. This Ms. is transcribed carefully by Abu'l-Fath Naṣr b. Muḥammad b. Ḥibatu'llah b. Manṣūr, an Iranian scribe who mentions the date of transcript in two places: on folio 120 b at the end of the first-half of the text and also on f. 239 b in the colophon, where he gives the corresponding Iranian date, month and era: Isfandār Mudh 565 A.H. Shamsī. This is a historical Ms. as it contains several endorsements of great owners, the earlier ones being erased purposely. On the fly-leaf, underneath the title, in Kūfic gold letters in a quadrangular space of $4'' \times 3''$ with gold borders and rubrication, the history of the entry of this Ms. into the library of a high Iranian revenue official is recorded. The owner mentions his name as Awhad b. As'ad b. Bahrām al-Mustawfī al-Baihaqī who takes great pride in possessing this unique manuscript and calls it a 'precious diadem with which he has been crowned in the month of $Sha'b\bar{a}n$ 818 A.H."/October 1415 A.D. It appears that this Ms. had been transferred in the earlier days from Iran and ther con the Tridia and entered into the Library of the Mughal Emperors, as is has been made to standardize the text, particularly the variation of figures in the tables has been a very difficult feature. While retaining or admitting Veliuddin Ms. as a basic-text, minor variants have been noted in the foot-notes. This Ms. contains 313 folios of 23 lines per page. It is in broken Nashk and is vocalised in part s and written on Khān-Bāligh paper with bronze coloured ink. Frontispiece and Unvans of chapters are in ornamental Kufic characters with endorsments of various imporant owners: - (1) An owner whose name is obliterated and who perhaps purchased the Ms. in Baghdad in 536 A.H. - (2) Muḥammad b. Muḥammad at-Turbati? temporary resident of the Great Mosque at Damascus, dated 774A.H. - (3) Another endorsment of Muhammad b. Ahmad al-Khaṭīb, an inheritor of the book, dated 823 A.H. Then it was acquired by Shaikhu'l-Islām Veliu'd-Din for his own Library, as it bears his seal and autograph signature. It is now preserved in the Bayazid Library, Istanbul and is one of the most valuable Mss. of the *Qanūn* existing in the world. It is denoted by the letter "V" for Veliuddin or j in the foot-notes. V. [Orient Quart 1213,] now in the University Library Tubingen, Ex. Preussische Staatsbibliothek, Berlin, bearing old acc. No.213, acquired by that Library in 1927, is the fifth almost complete Ms. dated 562 A.H. /1166 A.D. which once belonged to the Imperial Library, Calcutta, now the Indian National Library, Belvedere, Calcutta, tion is given here for the first time. IV. [Veliuddin 2277] Bayazid Library, Istanbul, the base of our text. The scribe of this Ms, has left out the year of transcript in the Colophon on f 313 b; but after mentioning his own name as Abū Ya'lā Muhammad b. al-Husayn bin Fātik? or Qātik? (without dots) al-Qāshānī or Kāshānī has recorded: "Wednesday 14th Ramazān" as the date of transcript without giving the year. This according to calculation coincides with one of these years, 487, 495, 503, 511, 519, 527 and 535 A.H. There is an endorsement of an owner on the fly-leaf dated 536 A.H., so then, this Ms. according to the indications of the character of the hand-writing and antiquity appears to have been written much earlier than that 536, probably in the beginning of the 6th century, about 503 A.H. or so. This is practically the fourth dated Ms. of the Qanun that has been utilised for our edition of the text. This Ms. has been selected rightly as the base of the transcript by Dr. Max Krause and variants have been recorded from the other three Mss. utilised by him as mentioned above on pp 10-11. As regards the accuracy of the text and the variants it gives with the other six Mss., it may be said that it offers a very reliable text and the tables and diagrams are also neatly and carefully drawn, although figures in the tables of almost of all Mss. differ slightly. Again this Ms. probably belong to a cognate family. Every attempt at standardisation of the text has been made and intelligent readings from all the above Mss. have been given in the foot-notes to our printed edition. These show the extent to which attempt III. [Jārullah 1498] Millat Library, Istanbul dated 531 A.H./1136 A.D. is the Third complete important, correct vocalised and dated Ms. of the Qānūn. It was especially prepared for the library of a noble or ruler entitled Makinu'd-Dawlataīn Abī 'Alī Ahmad b. Ismā'īl whose native place or kingdom is not recorded. It is no doubt transcibed by an anonymous scholar in round bold cursive but legible clear Naskh with archaic script. It contains 401 folios; 20 lines per page, rubrications, tables and diagrams very carefully drawn and the text is highly vocalised and offers finest readings. It has been extensively utilised by Dr. Max Krause for collation and variants. In fact this may be considered as a second base for our printed text, and has been the prized possession of several astronomers and bibliophiles in the past ages, one of them being Abu'l-Ḥasan 'Alī b. Muhammad ash-shahrābādī in 639 A.H. It is a unique phenomena in the history of editing of such a highly technical text, that the Daira has been fortunate in utilising the oldest and the most correct Mss. of the work known to the world as yet. This positively adds to the authenticity of the printed text of this work. This Ms. is denoted by the letter "J" for Jārullah, or τ in the foot-notes to the text. It has not been catalogued as yet, hence its descrip- as the variants are negligible. It is denoted by the letter "O" for Oxford or "\" and the variants are given accordingly in the footnotes to the printed edition. II. [Arabe 6840] Bibliotheque Nationale Paris, France, dated 501 A.H. /1108, A.D., is the second oldest known Ms. recently acquired by authorities. This Ms. was kindly shown to me by Prof. Georges Vajda, Cataloguer of the recent acquistions as one of the priceless possessions of the Bibliotheque Nationale, and is a complete copy of the text, perhaps the oldest complete dated text known so far. It bears the title in ornamental Kufic letters on f 3 a on the frontispiece and several important endorsements on the fly-leaf showing the authenticity and preciousness of this copy. The scribe is Abu Ghālib b. abi'alī who transcribed it in Iṣfahan at the end of Ramazan 501 a.H. Apart from endorsements of other owners, this Ms. has been in possession of the Astronomer-Royal of Bābu'l-'alī, Muḥammad known as Munajjimak the little-astronomer. This is a historical Ms. bears several seals and endorsements of Royal Libraries, one in Yamanite handwriting, recording that this Ms. belongd to Abdu'llah b. Amīru'l Muminīn al-Manṣūr-bill'āh-i-Rabbi-'Alamin'Alī b. Amīri'l Mu'minīn al-Mahdī al-'Abbās, dated 4th Muharram 1226 A.H. It contains 204 Folios; its size is 38 x 27 cm; 36 lines per page; cursive Naskh, but very clearly and carefully written; rubrications; tables and diagrams neatly drawn. All headings in Kufic ornaments. The chief feature of this Ms. is that it closely resembles with the oldest copies and probably belongs to the same family, and corresponds ## A CONSPECTUS OF THE EXTANT MSS. OF THE $Q\bar{A}N\bar{U}N$ -I- $MAS'\bar{U}D\bar{I}$ I [Or. 516] Bodleian Library, Oxford dated 475/1082, the oldest known Ms. and transcribed only 35 years after the death of al-Bīrūnī and collated with an original evidently a contemporary copy, contains only first-half and ends with the VI Maqala. It retains all archaic features and is written in a close cursive Naskh in maghribi script in a scholarly hand. This Ms. has also been utilised for recording of variants and correction of the printed text, and gives very intelligent readings, and approximates the printed text; hence much nearer the authors own version. For want of the second-half, it could not be made as a base of the text. It appears that the author originally intended to divide the Book into two volumes and this being the first volume, ends on the VI Maqala. Its fuller description is found in the Latin Catalogue of the Bodleian by Nicolli on p. 360, Codex CCCLXX. Folios 160; size $8^{-1}/2$ "x $7^{-1}/2$ "; 24 lines per page, 5" length; without diacritical marks but with dots on 2 as usual in the 5th Cenury A.H. Defective in the beginning: Folio 1 a, begins with With Defective in the beginning: Folio 1 a, begins with the printed text p. 62. l. 6 which is the end of the 3rd Bab of 1st Maqala and ends on the VI Maqala with a colophon and a note of collation on folio 160 b, but the name of the scribe is not mentioned. The text of this Ms. corresponds materially with the Veliuddin Ms. used as a base for this edition and enhances incidentally the value and anthenticity of both the Mss. University College, now Vice-President of the Islamic Culture Board, always helped the Daira by his counsels on scientific and mathematical subjects. Prof. H. J.J. Winter of the University of Exeter, England, and Mr. Syed Hasan Burney, the famous author of "al-Bīrūnī" in Urdū, deserve the highest praise for their voluntary contributions. **P**rof. Winter's article on "The Place of the $Q\bar{a}n\bar{u}n$ -i- $Mas\bar{u}d\bar{i}$ in the History of Science." is a masterly
analysis of the contents of the $Q\bar{a}n\bar{u}n$ -i- $Mas'\bar{u}d\bar{i}$ in which he has also traced its influence on later astronomers. Mr. Burney has very generously contributed his latest researches on al-Bīrūnī under the title "Al-Bīrūnī and His Magnum opus, al-Qānūnu'l-Mas'ūdī" and has discussed in detail the achievements of al-Bīrūnī in various branches of knowledge; particularly portions relating to the theory of the Universe, Cosmogony, the Geo-centric theory, Calendars and Chronology, Trigonometry, Obliquity of the Ecliptic, Astronomical Geography, Prediction about America, General Picture of the World, Measurement of the Earth, Tables of Longitudes and Latitudes, Names of Indian Places in the Qanun, Projection of Cartography, Determination of the Motion of the Apogee of the Sun, the Length of the Solar Year, Physical Nature of the Sun, the Fixed Stars, and his reliance on Abdu'r-Rahmān aṣ-Ṣūfī's observations in the Suwaru'l-Kawākib, on the Eastern Movement of the Fixed Stars, the Anwa (or Meteorology), Lunar Theory, Distance of the Sun from the Earth, Distance and Magnitudes of the Stars from the Earth, Planets, Eclipses, Appearance of the New Moon and other interesting problems which serve as eye opener to modern astronomers. All these efforts would have been of no avail, if the discerning eye of the great scholar and statesman Maulana Abu'l-Kalām Āzād, Minister of Education, Govt. of India had not perceived the real importance of this work in the field of Medieval Sciences and enabled the Dāiratu'l-Ma'ārif to take up this difficult task by sanctioning a specific grant for the publication of this work and the works mentioned above in the General Introduction. His interest in the monumental works connected with the past glory of India is so deeply grounded in him that during the time of his visit to the Daira on the 24th of September 1952, he gave his masterly instructions about the editing, printing and publishing of this work and thereby laid the Daira and the future generations under a deep debt of gratitude by his trenchant advice, scholarly guidance and generous support. It was he who fulfilled the ambitions of the admirers of al-Bīrūnī from XI century A.D. down to our own times. In fact, the dedication of this work to him is but a meagre acknowledgment of his genuine interest in the publication of this work. In the real sense of the term, he is the motive-force behind all such cultural activities that go to enhance the prestige and name of India in foreign countries. In this connection two or three other scholars who have taken genuine interest and have helped the Daira by their advice and contributions also merit recognition. Prof. 'Abdu'r-Rahmān Khān, a former Principal, Osmania - (2) The second best of the oldest Mss. Jarullah No. 1498, in the Millat Library, Istanbul, dated 531 A.H./1136 A.D. - (3) The third one, the so called Berlin Ms. No 213 acquired in 1927, once belonged to the Imperial Library of Calcutta, is now preserved in the University Library, Tubingen (Orient Quart 1613) dated 562 A.H. /1166 A.D. - (4) The British Museum London, (Or. No.1997) Ms. dated 570 A.H./1174 A.D. The technical subject-matter, enormous astronomical tables, diagrams, figures, mathematical calculations, geometrical and trigonometrical problems and their solutions were a Herculian task which would have bewildered any other scholar except Max Krause. Only those who have worked on such undertakings can realise the amount of scholarship and the labour of love bestowed on such highly technical works. In fact our printed text may be considered as a posthumous edition of Dr. Max Krause. But when the transcript arrived in Hyderabad, the key to the manuscripts was missing and the results of the researches of Dr. Max Krause had not been completed. Therefore this edition had to be revised and collated in the light of the new material acquired by the present writer. There was no one scholar who combined in himself the knowledge of medieval mathematics and Arabic language. The Daira with the help of one of its workers, Maulavi Sayyīd Zainu'l-'Abidīn and another scholar of mathematics, Prof. Khwājā Mohīu'd-Dīn of the Dept. of Mathematics, Osmania University has attempted to complete this task under trying circumstances. That very day, a letter was addressed to her to release the transcript as a posthumous bequest of her late son to the Dāiratu'l-Ma'ārif and Professor Otto Spies of Bonn and Dr. Roemer, Director of the German Oriental Society at Mainz, were approached to use their good offices. In the meanwhile, the present writer was deeply engaged with the work of collecting fresh information and microfilms of the existing manuscripts of the Qanun-i-Mās' udī in the known libraries of the world and had collected the requisite data for a standard edition of the text, when in November 1952 through the kindness of Prof. Otto Spies of the Orientalisches Seminar, Bonn, the much longed for transcript of Dr. Max Kaurse arrived in Hyderabad. It was a great gift and legacy of a very serious nature. It would be in the fitness of things if the real debt of the late Dr. Max Krause is acknowledged at this point. It is his labours in the solution of the technical side of the work, and in his contribution to medieval astronomy that the Daira is reaping great benefit. His transcript of 1229 pages of foolscap size in his neat, clear, beautiful hand is a marvel of European scholarship on scientific subjects. He had taken meticulous care in transcribing the Arabic text from the Veliuddin (No. 2277) Bayazit Library Istanbul Manuscript written certainly before 536 A.H./1141 A.D. and in giving variants and difficult readings and emendations from the other four oldest manuscripts known to him at that time: (1) The Bodleian Library, Oxford, No. 516dated 475A.H. written almost 35 years after the death of the author. scheme did not materialise and scholars all over the world were anxious to see its text published. In 1951 when, the Dāiratu'l-Ma'ārif was making a fresh inquiry into its assets, and re-orientating its policy of publications, it included the Qānūn-i-Mas'ūdī in its new programme of publications, little knowing the difficulties that it will have to surmount in the implementation of this project. The present writer on whom the burden of the management of the Daira had fallen recently announced in 1951 at the XXII Session of the International Congress of Orientalists at Istanbul the intention of the Dāiratu'l-Ma'ārif to publish the Qānūn-i-Mās'ūdī in its New Series. This idea was welcomed by several Orientalists, particularly by Prof. Dr. Zeki Velidi Togan, Head of the Dept. of Islamic Studies in the University of Istanbul, Turkey. He had made definite contributions to Birunica by the publication of "Bīrūnī's Picture of the World" in the Memoirs of the Archaelogical Survey of India. No 53. Another great scholar, the Doyen of German Orientalists, Prof. Dr. Helmut Ritter, Director of the Orientalisches Seminar of the University of Frankfürt who had made his researches in Istanbul Libraries for more than 20 years revealed that Dr. Max Krause, one of the leading German Orientalists and Mathematicians, had perpared an edition of this work from the earliest known manuscript which had remained incomplete owing to his calamitous death in the bombardment of Hamburg in 1943 and was in possession of the mother of the late Dr. Max Krause. Nations, have been edited and published by Sachau, the Director of Oriental Seminar, Berlin. Nallino, who has made special study of Arabic, says of him: he is the most original, the deepest thinker that Islam has produced in the field of physical and mathematical research. The most important work of his life, on which his reputation chiefly rests, i.e., $Q\bar{a}n\bar{u}n-i-M\bar{a}s'\bar{u}d\bar{\imath}$ has not yet been published. It is the most complete and the most authentic work of the Arab Astronomers, and it contains certain theories which are commonly supposed to have been discovered in Europe in XVII century. Both the Oriental scholars and the Astronomers have been demanding its complete publication since 1868, when Sir Henry Elliot published the tenth chapter of the fifth book of *Qānūn-i-Mās'ūdī*. The Royal Asiatic Society of England and the Academies of Science of Paris and Berlin have passed resolutions expressing very great desirability of the publication of $Q\bar{a}n\bar{u}n$ -i- $Mas'\bar{u}d\bar{i}$ ". In the following years, Dr. Ziauddin Ahmed, during his own researches on higher Mathematics, contributed two articles in the journal of *Islamic Culture* of Hyderabad in 1931 and 1934, emphasising the necessity of the publication and translation of the *Qānūn-i-Mas'ūdī*. Later another Indian mathematician and physicist, the late Sir Shah Sulaiman, once the Vice-Chancellor of the Muslim University, Aligarh, had collected lot of material and got it translated into Urdu with the idea of publishing it, but the ### STANDARDISATION OF THE TEXT AND A BRIEF SURVEY OF THE EXTANT MANUSCRIPTS OF THE QĀNŪN-I-MAS'ŪDĪ OF AL-BĪRŪNĪ The Qānūn-i-Mas'ūdī, the magnum opus of al-Bīrūnī, which was compiled in 421/1030 is one of those monumental works that had remained unpublished for the past nine hundred years inspite of the efforts of old and new schools of Arabists and Mathematicians. It was Nicholas de Khanekoff, Russian Orientalist, who first drew the attention of European scholars in 1866 to the scientific achievements of al-Bīrūnī and the necessity of a complete translation of his works. Edward Sachau laid the scholars under a deep debt of gratitude by editing and translating two of the important works of al-Bīrūnī, the Athāru'l-Bāqiya and the Kitābu'l-Hind in 1878 and 1887 respectively, but the Qānūn had remained a sealed book. A proposal dated 30th April 1913 which emanated from the portals of the Muslim University, Aligarh, by Dr. Ziauddin Ahmed and Dr. Horovitz is found in the files of the
Dāiratu'l-Ma'ārif and it runs as follows: "Abu Raihan Muhammed Ibn Ahmed El-Biruni lived in the time of Mahmud of Ghazni, with whom he came to India on several occasions. He studied Sanskrit and he acquired the reputation of a chronologist and an astronomer. Two of his important 4 Besides these the Dāira has planned its fresh Programme of Publications for the next triennium after due consultation and collaboration with famous scholars of various countries. It is earnestly hoped that the Dāira will be enabled to complete the monumental works it has already started to edit and publish, and to provide richer and more original material in future through its later publications also. In conclusion, the Chief Editor solicits that his appeal will meet with greater response in the coming years and that with the help of distinguished collaborators and with the financial subsidy of generous patrons, particularly the Ministry of Education, Government of India, it will be possible for the Dāira to implement these great literary projects in the near future, to maintain its past reputation, to justify its position among the premier institutions of Eastern research in India, to render greater service to the cause of humanities and to promote cultural unity amongst kindred nations. D/31 st March 1956, Dāiratu'l-Mā'arif-il-Osmania, Hyderabad-Dn. 7 M: Nizāmu'd-Dīn (Editor-in-Chief) - (VI) TADHKIRATU'L-HUFFAZ of Shamsu'd-Dīn adh-Dhahabī (d. 1347 A.D.). Standard work on the Biographies of Traditionists). Vol.I. (Revised Edition) (to be continued). - (VII) KANZU'L-'UMMAL of 'Alī al-Muttaqī al-Hindī (d. 1567 A.D.) (An authentic Compendium of the Corpus of Hadīth literature). Revised Edition. (Vols. IV&V) (to be continued in 16 Vols.). #### HISTORICAL & BIOGRAPHICAL WORKS - VIII) DHAIL-I-MIRĀTU'Z-ZAMĀN of Quṭbu'd-Dīn al-Yūnīnī (d. 1326 A.D.). A contemporary record of Post-Crusade Kingdoms of Syria, Egypt and other European Principalities). Vols. I-II. (to be continued). - (XI) AD-DURARU'L-KAMINA of Ibn Ḥajar al-Asqalānī (d. 1448 A.D.) Biographies of the Eminent Personalities of VIII century A.H. (Vol. III). - (X) NUZHATU'L-KHWAŢIR of 'Abdu'l Ḥayy of Nadwatu'l-'Ulamā, Lucknow. Biographies of Eminent Indians from the I-XIV century Hijra) (Vols.IV&V) (to be continued). #### The New Series #### SCIENTIFIC WORKS - (I) The SUWARU'L-KAWAKIB of Abu'l-Ḥusayn 'Abdu'r-Rahmān aṣ-Ṣūfī (d.986 A.D.). (Description of the 48 Constellations and revision of Ptolemy's Almagest or Syntax. - (II) The QANŪN-I-MAS'ŪDĪ or Canon Masudicus by Abū Rayhān al-Bīrūnī (d. 1040 A.D.). Encyclopaedia of Astronomical Sciences and Chronology of Ancient Nations etc. (Vols I-III). - (III) The KITABU'L-ANWA' of Ibn Qutayba (d.879 A.D.) Meteorology of the Arabs, and exposition of technical terms lexicographically. - (IV) The ḤĀWĪ FIṬ-ṬIBB of Abū Bakr Muḥammad b. Zakariyya ar-Rāzī (d. 925 A.D.). Compendium of the Greek Medical Lore with Rāzī's clinical Observations and Treatment of Diseases (Vol.I-III). (to be continued in 7 vols.) #### TRADITON & TRADITIONISTS (V) AL-JARḤ WA'T-TA'DIL of Ibn Abī Ḥātim ar-Rāzi (d. 938 A.D.) · (Criticism of the Sciences of Tradition and Traditionists). Vol. IV, pts. i-ii. (Whole work completed in 9 vols). valued highly for the sake of liberal knowledge and for preserving the cultural unity of the South-East Asian nations. In spite of the magnitude of the task and the variety of subjects and technical difficulties of editing such highly specialised works, the Dāira has, to an appreciable extent, attempted to bring out these works in the original Arabic text with as much accuracy as possible and with as few drawbacks as are inherent in all human undertakings and with as little equipment and resources as are necessary for publishing such highly learned texts. Details of all these efforts, the position of the author in a particular branch of knowledge, the place of a particular work in the literature of that subject, the introduction, essays, notes and indices as are necessary for modern research publications, have all been appended to each and every work. The interested reader will thus know the part played by a particular author in advancing human knowledge in his own days and the importance of that particular book in the present times. The Daira owes a deep debt of gratitude to all those who have helped it to produce the works in the present form. Due acknowledgment has been made of all such benefactors in the right place. It further wishes to seek the indulgence of all scholars for any shortcomings they may come across and requests them to help it by their advice in future also. The New Programme of these Publications was first announced in 1951 at the XXII Session of the International Congress of Orientalists at Istanbul andwas finalised at the Colloquium on Islamic Culture at Princeton in 1953. It was highly welcomed by the great Orientalists that had assembled there from the four quarters of the globe. The visit of the Hon'ble Maulana Abu'l-Kalām Azād, Minister of Education, Government of India, to the city of Hyderabad, the Osmania University and the Dāiratu'l-Ma'ārif on 24th September 1952 and his survey of the activities of the Dāira and its future plans put a new life into the work of the Dāira and enabled it to render greater service by reviving the glorious past of the East and presenting to the world a few masterpieces of the Medieval times which have been the coveted goal of the Western nations during this and the past centuries. This was but a consummation of the patronage that had been extended to Oriental Studies by India in the past ages. The New Series of which a list is given below, (this work forms one of its components) would not have seen the light of day, had it not been for the continued financial subsidy from the Government of Hyderabad and the Osmania University, as well as for the specific grant of the Ministry of Education, Government of India. Thus the Dāira has been fortunate in opening fresh fountains of knowledge for new workers in free India and has been able to depute a few silent ambassadors of our own country to foreign lands where Arabic is studied seriously and where Eastern thought and learning are #### GENERAL INTRODUCTION Since the achievements of Eastern authors in the fields of humanities and sciences are of basic importance and since modern historians of literature, religion, philosophy and science are deeply interested in the evolution of thought and are making great researches into the regions of knowledge covered by the geniuses of the past centuries, the Executive and Literary Committees of the Dāiratu'l-Ma'ārif, realising the great need of our times, have planned a New Programme of Publications and included in it several literary, scientific and historical works which had remained unpublished and beyond the reach of students, scholars and even experts for centuries. During the past seven decades, the Dāiratu'l-Ma'ārif, keeping in view its aims and objects and its resources, has contributed its share to the advancement of Eastern knowledge in various branches of studies and has published nearly 150 independent works in 350 volumes of which a cursory mention has been made in the Glimpses of the Dāiratu'l-Ma'ārif (1888-1956), published recently. The year 1951 marks a great extension in the activities of the Dāiratu'l-Ma'ārif and it may well be claimed as one of the lasting fruits of Independence and a symbol of our national re-emergence. ## GENERAL INTRODUCTION TO THE NEW SERIES OF THE DAIRATU'L-MA'ARIF-IL-OSMANIA, PUBLISHED UNDER THE AUSPICES OF THE MINISTRY OF EDUCATION, GOVERNMENT OF INDIA ### THIS WORK IS DEDICATED TO THE HON'BLE MAULANA ABUL-KALAM AZAD, Minister for Education, Natural Resources and Scientific Research, Government of India, in grateful acknowledgment of the part played by him in the achievement of our Independence, in the advancement of education, in the promotion of scientific research, in the enhancement of the cultural prestige of India abroad, and as a tribute to his profound scholarship and creative genius, placing the Dāiratu'l-Ma'ārif-i'l-'Osmania in a unique position to publish one of the masterpieces of Eastern science, the Qānūn-i-Mas'ūdī (The Canon Masudicus) of the great philosopher, mathematician, astronomer and scientist, Abū Rayhān Muhammad b. Ahmad al-Bīrūnī (d. 1048 A.D.), that had remained unpublished for the past ten centuries in spite of the serious efforts of distinguished scholars and learned institutions of the East and West. - (5) The fifth Ms. is the old Berlin one, now bearing the shelf-mark (Orient Quart 1613) dated 562 A.H./1166. A.D. and preserved in the University Library of Tubingen. (Abbr "B"). - (6) The sixth Ms. is in the British Museum, London (Or. No. 1997) which has been transcribed in 570 A.H./1174 A.D. (Abbr. "L"). - (7) The seventh Ms. is the one that has been transferred from the Tal'at Pāsha collection to the Egyptian National Library, Cairo (Miqat No. 866) dated 673 A. H./1274 A. D. (Abbr. "M"). Detailed description of all these and other Mss. will appear in the General Introduction of the Chief Editor M. N. Manuscripts of al-Qānūnu'l-Mas'ūdī of al-Bīrūnī arranged in chronological order and utilised for a standard edition of the text * * * * * * * The Director of the Dairatul Ma'arif il-Osmania has been fortunate in obtaining information about the earliest known Mss. of this work in the great libraries of the world and also Microfilms of the most important ones which are as follows:— - (1) The earliest known Ms. which is first half of the text is in the Bodleian Library, Oxford, (Or.No. 516) dated 475 A.H. / 1082 A.D. (Abbreviation adopted "O"). - (2) The second oldest Ms. which has recently been acquired by the authorities of the Bibliotheque Nationale, Paris, France, is (Arabe No. 6840) dated 501 A.H./1108 A.D. (Abbr. "F"). - (Jārullah No. 1498) Istanbul, dated 531 A.H./1136 A.D. Abbr. "J"). - (4) The fourth Ms. is also in
Istanbul in the Library of Bāyazīd (Valiuddin No. 2277). This Ms. has been transcribed sometime before 536 A.H./II4I A.D. and has been the base of the late Dr. Max Krause who copied it carefully, verified the diagrams and collated it with three other Mss. for nearly ten years, but could not finish it owing to his untimely death in the bombarding of Hamburg in 1943 in the World War II. We have followed Max Krause's transcript closely, but compared and corrected it from other better Mss. (Abbr. "V"). # AL-QĀNŪNU'L-MAS'ŪDĪ (Canon Masudicus) Vol. I (AN ENCYCLOPAEDIA OF ASTRONOMICAL SCIENCES) com the oldest extant Mss. Under the auspices of the Ministry of Education, Government of India Published by The Dāiratu'l-Ma'ārif-il-Oṣmānia (Osmania Oriental Publications Bureau) Hyderabad-Dn. INDIA