الملخص العربي

اللتُوث بالعناصـر النقيلا هـو مـن أهم المشـاكل البيئيـة، وإمتصاصــهـا بوإسـطة الطحالب يعتبر أحد البدائل الفعالة الرخيصة لأزالة هذه العناصر من مياه الصرف.

لذلك نخنص في هذا البحث بدراسـة المعالجـة الحيويـة للمياه المنخفضـة الجودة بواسطة الطحالب والتغيرات التي تحدث في الإنبات واللنمو وبعض الأنشطة الفسيولوجية ذات الصـلة بنباتي القمـح والفول البلدي كنتيجـة لتأثره بميـاه الصـرفـ والتركيزات المخنلفة لمحاليل العناصر اللققيلة قبل وبعد معالجتها بالطحالب.

وبنـاء عليه قد تم إجراء جزء مـن هذا اليحث تحت الظروف المعمليـة والجزء الاخر في الأصص.

تجارب تحت ظروف معملية:
أُ- تَم تجميعع اربعـة انـواع مـن الطحالب البحريـة [اولفـا لاكتيوكا (طحالـب خضـراء) تيروكالديـا كابيلاسى و جانيـا روبنز وكورالينا ميدتيرانيا (طحالب حمراء) وتجههيزهـا لاستخدامها في التجارب الاولية لتحديد افخل الظروف لامتصاص هذه الايونات.

ويمكن تلغيص النتائج النى تم الحصول عليها على اللنحو النالي:-
1- اقل المنصاص للحناصر اللقيلة يحدث تحت الظروف الاكثر حامضيه وقاعدية. واعلى نسبة امنصاص لها في معظم الاحيان يحدث عند V-o pH.
 دقيقه وبعدها لا يوجد أي تغير ملحوظ في نسبة الامتصاص.

ץ- اقصى المنصاص للأيونات تتحقق عندما تكون كلـة الطحالب في المحاليل • ع جرام /تّز تَريبا.

ب- ثبعـا للتجـارب الاوليــة تـم اختيـار اكفـأ ثلاثـثـة انـواع مـن الطـالـب لمعالجـة الميـاه
 لبادرات نباني القمح والفول البلدي •

1- نسبة انبـات بذور نباتات محل الاراسـة تقل تندريجيا مـع زيـادة تركيز العناصر الالقيلة في المياه ولكن هذه النسبة تحسنت مع دعالجة الطحالب لهذه المياه. Y- نشاط أنزيمـي الكتاليز والبيروكسيديز للبادرات وجد انـه متغير في النباتين تبعا لنركيز العناصر الثقيلة في المياه المعالجة والغير المعالجة بالطحالب.

تجارب الأصص فى الصوية الزجاجية:

ا- أدى اجهـاد النبـاتين بالعناصـر الالقيلة الـى انخفاض ملحوظ في قياسـات النمو لأعضاء النبانتين (جذر - مجموع خضرى- اوراقّ) في مرحلتّن مختلفتين للنمو عند مقارنتها بالثباتات المروية بمياه نهر النيل في حين ان المعالجـة بالطحالب أدت الى التحفيز في قياسـات النمو المختلفة بالمقارنـة بالنباتات المعاملة بالمياه
الغير معالجة بالطحالب
r- زيـادة تركيز العناصر الثقيلـة تـؤدى الـى الاتخفـاض الواضــح في معـل تكوين الصباغ البناء الضوئي (كلوروفيل أ و كلوروفيل ب والكاروبينيدات) ولكن معالجـة الطحالب للمياه احدثت زيادة ملحوظلة في محتوى الاصباغ في كلا النباثين عند المقارنة بالنباتات المعاملة بالمياه الغير معالجة بالطحالب.
r- زيـادة تركيز العناصر اللقيلة في المياه المنخفضـة الجودة الظهرت تـأثنيرا مشبطا على نواتج الايض (السكريات- البروتينات) في بذور النباتين ومن ناحية اخرى ادت المعالجة بالطحالب الىى زيادة هذه النواتج بالمقارنة بالنباتات المعاملة بالمياه الغير معالجة بالطحالب.

ع- الزيادة التدريجية لتركيز العناصر النقبلِة في المعـاملات ادى الـى زيـادة نركيزهـا في بذور اللناتّين عند مقارنتها بالأخرى المعاملة بالمياه الغير معالجة بالطحالب.

 فى تكنولوجيا معالجةً المياه قبل اعادة استخذامها.
\qquad

List of Tables

Title		page
Table (1):	Macro, micro-nutrients and heavy metal contents (mg/L) of the five drains.	39
Table (2):	Effect of pH on Cd removal percentage by different algal powders.	57
Table (3):	Effect of pH on pb removal percentage by different algal powders.	57
Table (4):	Effect of pH on Ni removal percentage by different algal powders.	57
Table (5):	Effect of pH on Zn removal percentage by different algal powders.	58
Table (6):	Effect of pH on Cu removal percentage by different algal powders.	58
Table (7):	fffect of contact time on Cd removal percentage by different algal powders.	63
Table (8):	Effect of contact time on pb removal percentage by different algal powders.	63
Table (9):	Effect of contact time on Ni removal percentage by different algal powders.	64
Table (10):	Effect of contact time on Zn removal percentage by different algal powders.	64
Table (11):	Effect of contact time on Cu removal percentage by different algal powders.	65
Table (12):	Effect of algal biomass on Cd removal percentage by different algal powders.	69
Table (13):	Effect of algal biomass on pb removal percentage by different algal powders.	69
Table (14):	Effect of algal biomass on Ni removal percentage by different algal powders.	70

Title		page
Table (15):	Effect of algal biomass on Zn removal percentage by different algal powders.	70
Table (16):	Effect of algal biomas on Cu removal percentage by different algal powders.	71
Table (17):	Effect of low quality and algal treated Irrigation water on the final percentage germination (\%) of seeds and seedling enzymes of wheat and faba bean.	78
Table (19):	Effect of low quality and algal treated irrigation water on some vegetative growth parameters of wheat plants at 5- weeks from planting.	88
leffect of low quality and algal treated irrigation water on some vegetative growth parameters of wheat plants at 9- weeks from planting..	89	
Table (20):	Effect of low quality and algal treated irrigation water on some vegetative growth parameters of faba bean plants at 5-weeks from planting.	103
Table (22):	Effect of low quality and algal treated irrigation water on some vegetative growth irrigation water on leaf pigments content of wheat plants at 5- weeks from planting.	113
parameters of faba bean plants at 9-weeks from planting.	104	
Effect of low quality and algal treated irrigation water on leaf pigments content of wheat plants at 9- weeks from planting.	114	
Tafect of low quality and algal treated		

Title		page
Table (24):	Effect of low quality and algal treated irrigation water on leaf pigments content of faba bean plants at 5-weeks from planting	119
Table (25):	Effect of low quality and algal treated irrigation water on leaf pigments content of faba bean plants at 9- weeks from planting	120
Table (26):	Effect of low quality and algal treated irrigation water on some chemical components of wheat seeds at harvesting.	129
Table (27):	Effect of low quality and algal treated irrigation water on some chemical components of faba bean seeds at harvesting.	130

List of Figures

Title		Page
Fig.(1):	Effect of pH on Cd removal percentage by different algal powders.	59
Fig.(2):	Effect of pH on Pb removal percentage by different algal powders .	59
Fig.(3):	Effect of pH on Ni removal percentage by different algal powders .	60
Fig.(4):	Effect of pH on Zn removal percentage by different algal powders.	60
Fig.(5):	Effect of pH on Cu removal percentage by different algal powders.	61
Fig.(6):	Effect of contact time on Cd removal percentage by different algal powders .	66
Fig.(7):	Effect of contact time on Pb removal percentage by different algal powders .	66
Fig.(8):	Effect of contact time on Ni removal percentage by different algal powders .	66
Fig.(9):	Effect of contact time on Zn removal percentage by different algal powders .	67
Fig.(10):	Effect of contact time on Cu removal percentage by different algal powders .	67
Fig.(11):	Effect of algal biomass on Cd removal percentage by different algal powders .	72
Fig.(12):	Effect of algal biomass on Pb removal percentage by different algal powders .	72
Effect of algal biomass on Ni removal percentage by different algal powders .	72	

Title		Page
Fig.(14):	Effect of algal biomass on Zn removal percentage by different algal powders .	73
Fig.(15):	Effect of algal biomass on Cu removal percentage by different algal powders .	73
Fig.(16):	Effect of low quality and algal treated irrigation water on the final percentage germination of wheat and faba bean seeds .	79
Fig.(17):	Effect of low quality and algal treated irrigation water on peroxidase activity (U/gm F.W.) of wheat and faba bean Seedlings.	80
Fig.(18):	Effect of low quality and algal treated irrigation water on catalase activity (U/gm F.W.) of wheat and faba bean Seedlings .	81
Fig.(19):	Effect of low quality and algal treated irrigation water on shoot height (cm) of wheat plants at 5 and $9-$ weeks from planting.	90
Fig.(20):	Effect of low quality and algal treated irrigation water on root length (cm) of wheat plants at 5 and $9-$ weeks from planting .	91
Fig.(21):	Effect of low quality and algal treated irrigation water on shoot fresh weight (gm) of wheat plants at 5 and 9- weeks from planting .	92
	Effect of low quality and algal treated irrigation water on shoot dry weight (gm) of wheat plants at 5 and 9- weeks from planting .	93
Effect of low quality and algal treated irrigation water on leaf number per wheat plants at 5 and 9- weeks from planting .	94	
Fig		

Title		Page
Fig.(24):	Effect of low quality and algal treated irrigation water on leaf area per wheat plants $\left(\mathrm{cm}^{2}\right)$ at 5 and 9-weeks from planting.	95
Fig.(25):	Effect of low quality and algal treated irrigation water on shoot height (cm) of faba bean plants at 5 and 9 - weeks from planting.	105
Fig.(26):	Effect of low quality and algal treated irrigation water on root length (cm) of faba bean plants at 5 and $9-$ weeks from planting.	106
Fig.(27):	Effect of low quality and algal treated irrigation water on shoot fresh weight (gm) of faba bean plants at 5 and 9 - weeks from planting.	107
Fig.(28):	Effect of low quality and algal treated irrigation water on shoot dry weight (gm) of faba bean plants at 5 and 9 -weeks from planting.	108
Fig.(29):	Effect of low quality and algal treated irrigation water on leaflets number per faba bean plants at 5 and 9 - weeks from planting .	109
Fig.(30):	Effect of low quality and algal treated irrigation water on leaflets area per wheat plants $\left(\mathrm{cm}^{2}\right)$ at 5 and 9 - weeks from planting..	110
Fig.(31):	Effect of low quality and algal treated irrigation water on leaf Photosynthetic Pigments content ($\mathrm{mg} \backslash \mathrm{gm}$ F.W.) of wheat plants at 5 - weeks from planting.	115
Fig.(32):	Effect of low quality and algal treated irrigation water on leaf Photosynthetic Pigments content (mg gm F.W.) of wheat plants at $9-$ weeks from planting.	115

	Title	Page
Fig.(33):	Effect of low quality and algal treated irrigation water on leaf Photosynthetic Pigments content (mg gm F.W.) of faba bean plants at 5 - weeks from planting.	121
Fig.(34):	Effect of low quality and algal treated irrigation water on leaf Photosynthetic Pigments content (mg gm F.W.) of faba bean plants at 9 - weeks from planting.	121
Fig.(35):	Effect of low quality and algal treated irrigation water on total carbohydrate percentage of wheat and faba bean seeds at harvesting.	131
Fig.(36):	Effect of low quality and algal treated irrigation water on total protein percentage of wheat and faba bean seeds at harvesting.	132
Fig.(37):	Effect of low quality and algal treated irrigation water on the heavy metals content (mg /kg) in wheat seeds at harvesting.	133
	Effect of low quality and algal treated irrigation water on the heavy metals content (mg $/ \mathrm{kg})$ in faba bean seeds at harvesting.	133

List of Abbreviations

ha	Hectare
hr	Hour
Min	Minute
$\mathrm{O}_{2}{ }^{-}$	Superoxide radical
${ }^{1} \mathrm{O}_{2}$	Singlet oxygen
OH	Hydroxyl radical
$\mathrm{H}_{2} \mathrm{O}_{2}$	Hydrogen peroxide
CAT	Catalase enzyme
POD	Peroxidase enzyme
SOD	Superoxide dismutase
Chl a	Chlorophyll a
Chl b	Chlorophyll b
$\mathrm{Chl}(\mathrm{a}+\mathrm{b})$	Chlorophyll (a+b)
ppm	Part per million
AAS	Atomic absorption spectrometer
C_{i}	The initial metal ion concentrations
C_{f}	The final metal ion concentrations
EC	Electrical conductivity
Final	
germination	The final percentage of germination
$(\%)$	
cv	cultivate
D	Density
A.O.A.C	Association of Official Analytical Chemists
v_{s}	The titration volumes of the sample
v_{b}	The titration volumes of the blank
F	The propriate conversion factor
LSD	Least Significant Difference
s.s.	Synthetic solution of heavy metals

